Spaces:
Sleeping
Sleeping
import json | |
import os | |
METRIC_NAME = { | |
# single-turn | |
"arc_easy": "accuracy", | |
"arc_challenge": "accuracy", | |
"gpqa_diamond": "accuracy", | |
"drop": "mean", | |
"winogrande": "accuracy", | |
"gsm8k": "accuracy", | |
"hellaswag": "accuracy", | |
"humaneval": "mean", | |
"ifeval": "final_acc", | |
"math": "accuracy", | |
"mmlu": "accuracy", | |
"mmlu_pro": "accuracy", | |
"mmmu_multiple_choice": "accuracy", | |
"mmmu_open": "accuracy", | |
# agentic | |
"gaia": "accuracy", | |
"gdm_intercode_ctf": "accuracy", | |
"gdm_in_house_ctf": "accuracy", | |
"agentharm": "avg_score", | |
"agentharm_benign": "avg_score", | |
"swe_bench": "mean", | |
} | |
MODEL_SHA_MAP = { | |
# open source models | |
"c4ai-command-r-plus": "https://huggingface.co/CohereForAI/c4ai-command-r-plus", | |
"Meta-Llama-3.1-70B-Instruct": "https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct", | |
"Mistral-Large-Instruct-2407": "https://huggingface.co/mistralai/Mistral-Large-Instruct-2407", | |
"Qwen2.5-72B-Instruct": "https://huggingface.co/Qwen/Qwen2.5-72B-Instruct", | |
# closed source models | |
"claude-3-5-sonnet-20241022": "https://www.anthropic.com/claude/sonnet", | |
"gemini-1.5-flash": "https://deepmind.google/technologies/gemini/flash", # TODO: points to 2.0, can't find page for 1.5 | |
"gemini-1.5-pro": "https://deepmind.google/technologies/gemini/pro", | |
"gpt-4o": "https://openai.com/index/hello-gpt-4o", | |
"gpt-4o-mini": "https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence", | |
"o1": "https://openai.com/o1", | |
} | |
MODEL_VERSION_MAP = { | |
# open source models | |
"c4ai-command-r-plus": "c4ai-command-r-plus", | |
"Meta-Llama-3.1-70B-Instruct": "Llama-3.1-70B-Instruct", | |
"Mistral-Large-Instruct-2407": "Mistral-Large-Instruct-2407", | |
"Qwen2.5-72B-Instruct": "Qwen2.5-72B-Instruct", | |
# closed source models | |
"claude-3-5-sonnet-20241022": "Claude-3.5-Sonnet-20241022", | |
"gemini-1.5-flash": "Gemini-1.5-Flash", | |
"gemini-1.5-pro": "Gemini-1.5-Pro-002", | |
"gpt-4o": "GPT-4o-20240806", | |
"gpt-4o-mini": "GPT-4o-mini-20240718", | |
"o1": "o1-20241217", | |
} | |
AGENTIC_LOG_MODEL_NAME_MAP = { | |
"claude-3-5-sonnet-20241022": "claude-3-5-sonnet-20241022", | |
"gemini-1.5-pro": "gemini-1.5-pro-002", | |
"gpt-4o": "gpt-4o-2024-08-06", | |
"o1": "o1-2024-12-17", | |
} | |
AGENTIC_TASKS = ["gaia", "gdm-intercode-ctf", "gdm-in-house-ctf", "agentharm", "swe-bench"] | |
def combine_eval_results(results_path: str, model_name: str, type: str,) -> dict: | |
results = dict( | |
{ | |
"config": { | |
"model_name": model_name, | |
# dummy keys | |
"model_sha": MODEL_SHA_MAP[model_name], | |
"model_dtype": "torch.float16", | |
}, | |
"results": {}, | |
} | |
) | |
if type == "base": | |
for file in os.listdir(os.path.join(results_path, model_name)): | |
if file.endswith(".json"): | |
with open(os.path.join(results_path, model_name, file), "r") as f: | |
try: | |
result = json.load(f) | |
task_name = result["eval"]["task"].split("/")[-1] | |
if task_name == "math": | |
metrics = [elm for elm in result["results"]["scores"] if elm["name"] == "expression_equivalance"][0]["metrics"] # TODO: change scorer if required | |
else: | |
metrics = result["results"]["scores"][0]["metrics"] | |
metric_name = metrics[METRIC_NAME[task_name]]["name"] | |
metric_value = metrics[METRIC_NAME[task_name]]["value"] | |
results["results"].update( | |
{ | |
task_name: { | |
metric_name: metric_value | |
} | |
} | |
) | |
except KeyError as e: | |
print(f"KeyError: {e}") | |
print(model_name) | |
print(file) | |
elif type == "agentic": | |
model_name = AGENTIC_LOG_MODEL_NAME_MAP[model_name] # change name based on log file structure | |
results_path = os.path.join(results_path, model_name) | |
for task in AGENTIC_TASKS: | |
for file in os.listdir(os.path.join(results_path, task)): | |
if file.endswith(".json"): | |
with open(os.path.join(results_path, task, file), "r") as f: | |
try: | |
result = json.load(f) | |
task_name = result["eval"]["task"].split("/")[-1] | |
metrics = result["results"]["scores"][0]["metrics"] | |
metric_name = metrics[METRIC_NAME[task_name]]["name"].split("/")[-1] | |
metric_value = metrics[METRIC_NAME[task_name]]["value"] | |
results["results"].update( | |
{ | |
task_name: { | |
metric_name: metric_value | |
} | |
} | |
) | |
except KeyError as e: | |
print(f"KeyError: {e}") | |
print(model_name) | |
print(file) | |
return results | |
def main(): | |
CACHE_PATH=os.getenv("HF_HOME", ".") | |
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") | |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") | |
base_bm_input_path = "./base_benchmarking_logs" | |
agentic_bm_input_path = "/fs01/projects/aieng/public/inspect_evals/agentic_benchmarking_runs" | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True) | |
for model_name in os.listdir(base_bm_input_path): | |
if os.path.isdir(os.path.join(base_bm_input_path, model_name)): | |
results = combine_eval_results(base_bm_input_path, model_name, "base") | |
# TMP: Add missing benchmarks to the results | |
for metric in METRIC_NAME.items(): | |
if metric[0] not in results["results"]: | |
results["results"].update({metric[0]: {metric[1]: None}}) | |
if os.path.isdir(os.path.join(agentic_bm_input_path, AGENTIC_LOG_MODEL_NAME_MAP.get(model_name, "NA"))): | |
agentic_bm_results = combine_eval_results(agentic_bm_input_path, model_name, "agentic") | |
results["results"].update(agentic_bm_results["results"]) | |
with open(os.path.join(EVAL_RESULTS_PATH, f"{model_name}.json"), "w") as f: | |
json.dump(results, f, indent=4) | |
# Create dummy requests file | |
requests = { | |
"model": model_name, | |
"model_sha": MODEL_SHA_MAP[model_name], | |
"model_version": MODEL_VERSION_MAP[model_name], | |
"base_model": "", | |
"revision": "main", | |
"private": False, | |
"precision": "float16", | |
"weight_type": "Original", | |
"status": "FINISHED", | |
"submitted_time": "", | |
"model_type": "pretrained", | |
"likes": 0, | |
"params": 0, | |
"license": "custom", | |
} | |
with open(os.path.join(EVAL_REQUESTS_PATH, f"{model_name}.json"), "w") as f: | |
json.dump(requests, f, indent=4) | |
if __name__ == "__main__": | |
main() | |