import json import os import logging from datetime import datetime # from lm_eval import tasks, evaluator, utils from evaluate_model import Evaluator from src.envs import RESULTS_REPO, API from src.backend.manage_requests import EvalRequest from util import load_dataframe, format_results logging.getLogger("openai").setLevel(logging.WARNING) def run_evaluation(eval_request: EvalRequest, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None): if limit: print( "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." ) # task_names = utils.pattern_match(task_names, tasks.ALL_TASKS) # print(f"Selected Tasks: {task_names}") evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs') results = evaluator.evaluate() # results["config"]["model_dtype"] = eval_request.precision # results["config"]["model_name"] = eval_request.model # results["config"]["model_sha"] = eval_request.revision dumped = json.dumps(results, indent=2) print(dumped) output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w") as f: f.write(dumped) print(evaluator.make_table(results)) API.upload_file( path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", repo_id=results_repo, repo_type="dataset", ) return results