Spaces:
Runtime error
Runtime error
import json | |
import os | |
import logging | |
from datetime import datetime | |
# from lm_eval import tasks, evaluator, utils | |
from evaluate_model import Evaluator | |
from src.envs import RESULTS_REPO, API | |
from src.backend.manage_requests import EvalRequest | |
from util import load_dataframe, format_results | |
logging.getLogger("openai").setLevel(logging.WARNING) | |
def run_evaluation(eval_request: EvalRequest, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None): | |
if limit: | |
print( | |
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." | |
) | |
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS) | |
# print(f"Selected Tasks: {task_names}") | |
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs') | |
results = evaluator.evaluate() | |
# results["config"]["model_dtype"] = eval_request.precision | |
# results["config"]["model_name"] = eval_request.model | |
# results["config"]["model_sha"] = eval_request.revision | |
dumped = json.dumps(results, indent=2) | |
print(dumped) | |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
with open(output_path, "w") as f: | |
f.write(dumped) | |
print(evaluator.make_table(results)) | |
API.upload_file( | |
path_or_fileobj=output_path, | |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
repo_id=results_repo, | |
repo_type="dataset", | |
) | |
return results | |