leaderboard / src /backend /run_eval_suite.py
Minseok Bae
Modified for hallucination evaluation task
d7b7dc6
raw
history blame
1.72 kB
import json
import os
import logging
from datetime import datetime
# from lm_eval import tasks, evaluator, utils
from evaluate_model import Evaluator
from src.envs import RESULTS_REPO, API
from src.backend.manage_requests import EvalRequest
from util import load_dataframe, format_results
logging.getLogger("openai").setLevel(logging.WARNING)
def run_evaluation(eval_request: EvalRequest, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
if limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
# print(f"Selected Tasks: {task_names}")
evaluator = Evaluator(eval_request.model, eval_request.revision, eval_request.precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs')
results = evaluator.evaluate()
# results["config"]["model_dtype"] = eval_request.precision
# results["config"]["model_name"] = eval_request.model
# results["config"]["model_sha"] = eval_request.revision
dumped = json.dumps(results, indent=2)
print(dumped)
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
print(evaluator.make_table(results))
API.upload_file(
path_or_fileobj=output_path,
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
repo_id=results_repo,
repo_type="dataset",
)
return results