Spaces:
Runtime error
Runtime error
import pandas as pd | |
from leaderboard.src.backend.model_operations import SummaryGenerator, EvaluationModel | |
from envs import HEM_PATH, SOURCE_PATH | |
from leaderboard.src.backend.util import load_dataframe, format_results | |
class Evaluator: | |
def __init__(self, model, revision, precision, num_fewshot, batch_size, device, no_cache, limit, write_out=True, output_base_path='logs'): | |
self.model = model | |
self.revision = revision | |
self.precision = precision | |
self.num_fewshot = num_fewshot | |
self.batch_size = batch_size | |
self.device = device | |
self.no_cache = no_cache | |
self.limit = limit | |
self.write_out = write_out | |
self.output_base_path = output_base_path | |
self.summary_generator = SummaryGenerator(model, revision) | |
self.eval_model = EvaluationModel(HEM_PATH) | |
def evaluate(self): | |
df = load_dataframe(SOURCE_PATH) | |
generated_summaries_df = self.summary_generator.generate_summaries(df) | |
avg_summary_len = self.summary_generator.avg_length | |
answer_rate = self.summary_generator.answer_rate | |
hallucination_scores = self.eval_model.evaluate_hallucination(generated_summaries_df) | |
accuracy = self.eval_model.compute_accuracy | |
hallucination_rate = self.eval_model.hallucination_rate | |
results = format_results(hallucination_scores, self.model, self.revision, self.precision, accuracy, hallucination_rate, answer_rate, avg_summary_len) | |
return results | |