Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Minseok Bae
Integrated backend pipelines - error occurs during model submission. (Debugging needed).
58b9de9
import logging | |
import numpy as np | |
import pandas as pd | |
import spacy | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from sentence_transformers import CrossEncoder | |
import src.backend.util as util | |
# Set up basic configuration for logging | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
# Load spacy model for word tokenization | |
nlp = spacy.load("en_core_web_sm") | |
def load_evaluation_model(model_path): | |
"""Load the evaluation model from the given path | |
Args: | |
model_path (str): Path to the evaluation model | |
Returns: | |
CrossEncoder: The evaluation model | |
""" | |
model = CrossEncoder(model_path) | |
return model | |
class ModelLoadingException(Exception): | |
"""Exception raised for errors in loading a model. | |
Attributes: | |
model_id (str): The model identifier. | |
revision (str): The model revision. | |
""" | |
def __init__(self, model_id, revision, messages="Error initializing model"): | |
self.model_id = model_id | |
self.revision = revision | |
super().__init__(f"{messages} id={model_id} revision={revision}") | |
class SummaryGenerator: | |
"""A class to generate summaries using a causal language model. | |
Attributes: | |
tokenizer (AutoTokenizer): Tokenizer for the model. | |
model (AutoModelForCausalLM): The causal language model. | |
summaries_df (DataFrame): DataFrame to store generated summaries. | |
revision (str): Model revision. | |
avg_length (float): Average length of summaries. | |
answer_rate (float): Rate of non-empty summaries. | |
""" | |
def __init__(self, model_id, revision): | |
""" | |
Initializes the SummaryGenerator with a model. | |
Args: | |
model_id (str): Identifier for the model. | |
revision (str): Revision of the model. | |
""" | |
try: | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, revision) | |
self.model = AutoModelForCausalLM.from_pretrained(model_id, revision) | |
except Exception as e: | |
logging.error(f"Error initializing model with id {model_id} and revision {revision}: {e}") | |
raise ModelLoadingException(model_id, revision) from e | |
self.summaries_df = pd.DataFrame() | |
self.revision = revision | |
self.avg_length = None | |
self.answer_rate = None | |
self.error_rate = None | |
def generate_summaries(self, df): | |
"""Generate summaries for a given DataFrame of source docs. | |
Args: | |
df (DataFrame): DataFrame containing source docs. | |
Returns: | |
summaries_df (DataFrame): Generated summaries by the model. | |
""" | |
source, summary, dataset = [], [], [] | |
error_count = 0 | |
for index, row in df.iterrows(): | |
_source = row['text'] | |
_dataset = row['dataset'] | |
prompt = util.generate_prompt(_source) | |
inputs = self.tokenizer(prompt, return_tensors='pt', max_length=1024, | |
revision=self.revision) | |
try: | |
outputs = self.model.generate(**inputs, max_new_tokens=1024, do_sample=False, | |
temperature=0.0, revision=self.revision) | |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True, | |
revision=self.revision) | |
except Exception as e: | |
print(f"Error at index {index}: {e}") | |
response = "" | |
error_count += 1 | |
summary.append(response) | |
source.append(_source) | |
dataset.append(_dataset) | |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)), | |
columns=["source", "summary", "dataset"]) | |
self._compute_avg_length() | |
self._compute_answer_rate() | |
self._compute_error_rate(error_count) | |
return self.summaries_df | |
def _compute_avg_length(self): | |
""" | |
Compute the average length of non-empty summaries using SpaCy. | |
""" | |
total_words = 0 | |
count = 0 | |
for summary in self.summaries_df['summary']: | |
if summary != "": | |
doc = nlp(summary) | |
words = [token.text for token in doc if token.is_alpha] | |
total_words += len(words) | |
count += 1 | |
self.avg_length = 0 if count == 0 else total_words / count | |
def _compute_answer_rate(self): | |
""" | |
Compute the rate of non-empty summaries. | |
""" | |
non_empty_count = sum(1 for summary in self.summaries_df['summary'] if summary) | |
total_rows = len(self.summaries_df) | |
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows | |
def _compute_error_rate(self, count): | |
""" | |
Compute the error rate of summaries. | |
""" | |
total_rows = len(self.summaries_df) | |
self.error_rate = 0 if total_rows == 0 else count / total_rows | |
class EvaluationModel: | |
"""A class to evaluate generated summaries. | |
Attributes: | |
model (CrossEncoder): The evaluation model. | |
scores (list): List of evaluation scores. | |
accuracy (float): Accuracy of the summaries. | |
hallucination_rate (float): Rate of hallucination in summaries. | |
""" | |
def __init__(self, model_path): | |
""" | |
Initializes the EvaluationModel with a CrossEncoder model. | |
Args: | |
model_path (str): Path to the CrossEncoder model. | |
""" | |
self.model = load_evaluation_model(model_path) | |
self.scores = [] | |
self.accuracy = None | |
self.hallucination_rate = None | |
def evaluate_hallucination(self, summaries_df): | |
""" | |
Evaluate the hallucination rate in summaries. This method updates the 'scores' attribute | |
of the instance with the computed scores. | |
Args: | |
summaries_df (DataFrame): DataFrame containing source docs and summaries. | |
Returns: | |
list: List of hallucination scores. Also updates the 'scores' attribute of the instance. | |
""" | |
source_docs = np.array(summaries_df['source']) | |
generated_summaries = np.array(summaries_df['summary']) | |
try: | |
scores = self.model.predict(source_docs, generated_summaries) | |
self.scores = scores | |
return self.scores | |
except Exception as e: | |
logging.error(f"Error evaluating hallucination: {e}") | |
raise | |
def compute_accuracy(self, threshold=0.5): | |
""" | |
Compute the accuracy of the evaluated summaries based on the previously calculated scores. | |
This method relies on the 'scores' attribute being populated, typically via the | |
'evaluate_hallucination' method. | |
Returns: | |
float: Accuracy percentage. Also updates the 'accuracy' and 'hallucination_rate' | |
attributes of the instance. | |
Raises: | |
ValueError: If scores have not been calculated prior to calling this method. | |
""" | |
if not self.scores: | |
error_msg = "Scores not calculated. Call evaluate_hallucination() first." | |
logging.error(error_msg) | |
raise ValueError(error_msg) | |
# Use threshold of 0.5 to compute accuracy | |
num_above_threshold = sum(score >= threshold for score in self.scores) | |
num_total = len(self.scores) | |
if not num_total: | |
raise ValueError("No scores available to compute accuracy.") | |
self.accuracy = (num_above_threshold / num_total) * 100 | |
self.hallucination_rate = 100 - self.accuracy | |
return self.accuracy | |