Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
updated
Browse files- Dockerfile +4 -1
- agent.py +34 -28
- requirements.txt +2 -2
- st_app.py +2 -11
Dockerfile
CHANGED
@@ -7,12 +7,15 @@ COPY ./requirements.txt /app/requirements.txt
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
-
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
16 |
|
17 |
WORKDIR $HOME
|
18 |
RUN mkdir app
|
|
|
7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
10 |
+
|
11 |
# User
|
12 |
RUN useradd -m -u 1000 user
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
17 |
+
|
18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
19 |
|
20 |
WORKDIR $HOME
|
21 |
RUN mkdir app
|
agent.py
CHANGED
@@ -10,7 +10,7 @@ from omegaconf import OmegaConf
|
|
10 |
from vectara_agentic.agent import Agent
|
11 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
12 |
from vectara_agentic.agent_config import AgentConfig
|
13 |
-
from vectara_agentic.
|
14 |
|
15 |
from dotenv import load_dotenv
|
16 |
load_dotenv(override=True)
|
@@ -33,7 +33,7 @@ tickers = {
|
|
33 |
"STT": "State Street",
|
34 |
"BK": "Bank of New York Mellon",
|
35 |
}
|
36 |
-
years = range(2015, 2025)
|
37 |
initial_prompt = "How can I help you today?"
|
38 |
|
39 |
|
@@ -102,47 +102,36 @@ class AgentTools:
|
|
102 |
|
103 |
def get_tools(self):
|
104 |
class QueryTranscriptsArgs(BaseModel):
|
105 |
-
|
106 |
year: int | str = Field(
|
107 |
default=None,
|
108 |
description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year",
|
109 |
examples=[2020, '>2021', '<2023', '>=2021', '<=2023', '[2021, 2023]', '[2021, 2023)']
|
110 |
)
|
111 |
-
ticker: str = Field(..., description=f"The company ticker this query relates to. Must be a valid ticket symbol from the list {list(tickers.keys())}.")
|
112 |
|
113 |
-
vec_factory = VectaraToolFactory(vectara_api_key=self.cfg.api_key,
|
114 |
-
vectara_corpus_key=self.cfg.corpus_key)
|
115 |
summarizer = 'vectara-summary-table-md-query-ext-jan-2025-gpt-4o'
|
116 |
-
ask_transcripts = vec_factory.create_rag_tool(
|
117 |
tool_name = "ask_transcripts",
|
118 |
tool_description = """
|
119 |
-
|
120 |
-
You can ask this tool any question about the company including risks, opportunities, financial performance, competitors and more.
|
121 |
""",
|
122 |
tool_args_schema = QueryTranscriptsArgs,
|
123 |
-
reranker = "multilingual_reranker_v1", rerank_k = 100, rerank_cutoff = 0.
|
124 |
-
n_sentences_before = 2, n_sentences_after =
|
125 |
summary_num_results = 15,
|
126 |
vectara_summarizer = summarizer,
|
|
|
127 |
include_citations = True,
|
|
|
128 |
verbose = False,
|
129 |
)
|
130 |
|
131 |
-
|
132 |
-
query: str = Field(..., description="The user query, always in the form of a question", examples=["what are the risks reported?", "who are the competitors?"])
|
133 |
-
top_k: int = Field(..., description="The number of results to return.")
|
134 |
-
year: int | str = Field(
|
135 |
-
default=None,
|
136 |
-
description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year",
|
137 |
-
examples=[2020, '>2021', '<2023', '>=2021', '<=2023', '[2021, 2023]', '[2021, 2023)']
|
138 |
-
)
|
139 |
-
ticker: str = Field(..., description=f"The company ticker this query relates to. Must be a valid ticket symbol from the list {list(tickers.keys())}.")
|
140 |
-
search_transcripts = vec_factory.create_search_tool(
|
141 |
tool_name = "search_transcripts",
|
142 |
tool_description = """
|
143 |
-
|
144 |
""",
|
145 |
-
tool_args_schema =
|
146 |
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
147 |
lambda_val = 0.005,
|
148 |
verbose=False
|
@@ -156,13 +145,14 @@ class AgentTools:
|
|
156 |
get_valid_years,
|
157 |
fmp_income_statement,
|
158 |
]
|
159 |
-
] +
|
160 |
[ask_transcripts, search_transcripts]
|
161 |
)
|
162 |
|
163 |
def initialize_agent(_cfg, agent_progress_callback=None) -> Agent:
|
164 |
financial_bot_instructions = """
|
165 |
-
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
|
|
|
166 |
- Use the 'fmp_income_statement' tool (with the company ticker and year) to obtain financial data.
|
167 |
- Always check the 'get_company_info' and 'get_valid_years' tools to validate company and year are valid.
|
168 |
- Use the 'ask_transcripts' tool to answer most questions about the company's financial performance, risks, opportunities, strategy, competitors, and more.
|
@@ -177,19 +167,35 @@ def initialize_agent(_cfg, agent_progress_callback=None) -> Agent:
|
|
177 |
def query_logging(query: str, response: str):
|
178 |
print(f"Logging query={query}, response={response}")
|
179 |
|
180 |
-
agent_config = AgentConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
agent = Agent(
|
|
|
|
|
183 |
tools=AgentTools(_cfg, agent_config).get_tools(),
|
184 |
topic="Financial data, annual reports and 10-K filings",
|
185 |
custom_instructions=financial_bot_instructions,
|
186 |
agent_progress_callback=agent_progress_callback,
|
187 |
query_logging_callback=query_logging,
|
188 |
verbose=True,
|
189 |
-
workflow_cls=SequentialSubQuestionsWorkflow,
|
190 |
)
|
191 |
|
192 |
-
agent.report()
|
193 |
return agent
|
194 |
|
195 |
def get_agent_config() -> OmegaConf:
|
|
|
10 |
from vectara_agentic.agent import Agent
|
11 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
12 |
from vectara_agentic.agent_config import AgentConfig
|
13 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
14 |
|
15 |
from dotenv import load_dotenv
|
16 |
load_dotenv(override=True)
|
|
|
33 |
"STT": "State Street",
|
34 |
"BK": "Bank of New York Mellon",
|
35 |
}
|
36 |
+
years = list(range(2015, 2025))
|
37 |
initial_prompt = "How can I help you today?"
|
38 |
|
39 |
|
|
|
102 |
|
103 |
def get_tools(self):
|
104 |
class QueryTranscriptsArgs(BaseModel):
|
105 |
+
ticker: str = Field(description="The ticker symbol for the company", examples=list(tickers.keys()), default=None)
|
106 |
year: int | str = Field(
|
107 |
default=None,
|
108 |
description=f"The year this query relates to. An integer between {min(years)} and {max(years)} or a string specifying a condition on the year",
|
109 |
examples=[2020, '>2021', '<2023', '>=2021', '<=2023', '[2021, 2023]', '[2021, 2023)']
|
110 |
)
|
|
|
111 |
|
|
|
|
|
112 |
summarizer = 'vectara-summary-table-md-query-ext-jan-2025-gpt-4o'
|
113 |
+
ask_transcripts = self.vec_factory.create_rag_tool(
|
114 |
tool_name = "ask_transcripts",
|
115 |
tool_description = """
|
116 |
+
Answer questions about a company (using its ticker) including risks, opportunities, financial performance, competitors and more, based on earnings calls transcripts.
|
|
|
117 |
""",
|
118 |
tool_args_schema = QueryTranscriptsArgs,
|
119 |
+
reranker = "multilingual_reranker_v1", rerank_k = 100, rerank_cutoff = 0.3,
|
120 |
+
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
121 |
summary_num_results = 15,
|
122 |
vectara_summarizer = summarizer,
|
123 |
+
max_tokens = 4096, max_response_chars = 8192,
|
124 |
include_citations = True,
|
125 |
+
save_history = True,
|
126 |
verbose = False,
|
127 |
)
|
128 |
|
129 |
+
search_transcripts = self.vec_factory.create_search_tool(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
tool_name = "search_transcripts",
|
131 |
tool_description = """
|
132 |
+
retrieves relevant earning call transcripts about a company (using its ticker).
|
133 |
""",
|
134 |
+
tool_args_schema = QueryTranscriptsArgs,
|
135 |
reranker = "multilingual_reranker_v1", rerank_k = 100,
|
136 |
lambda_val = 0.005,
|
137 |
verbose=False
|
|
|
145 |
get_valid_years,
|
146 |
fmp_income_statement,
|
147 |
]
|
148 |
+
] +
|
149 |
[ask_transcripts, search_transcripts]
|
150 |
)
|
151 |
|
152 |
def initialize_agent(_cfg, agent_progress_callback=None) -> Agent:
|
153 |
financial_bot_instructions = """
|
154 |
+
- You are a helpful financial assistant, with expertise in financial reporting, in conversation with a user.
|
155 |
+
- Never base your on general industry knowledge, only use information from tool calls.
|
156 |
- Use the 'fmp_income_statement' tool (with the company ticker and year) to obtain financial data.
|
157 |
- Always check the 'get_company_info' and 'get_valid_years' tools to validate company and year are valid.
|
158 |
- Use the 'ask_transcripts' tool to answer most questions about the company's financial performance, risks, opportunities, strategy, competitors, and more.
|
|
|
167 |
def query_logging(query: str, response: str):
|
168 |
print(f"Logging query={query}, response={response}")
|
169 |
|
170 |
+
agent_config = AgentConfig(
|
171 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
172 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
173 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
174 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
175 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
176 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
177 |
+
)
|
178 |
+
fallback_agent_config = AgentConfig(
|
179 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
180 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
181 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
182 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
183 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
184 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
185 |
+
)
|
186 |
|
187 |
agent = Agent(
|
188 |
+
agent_config=agent_config,
|
189 |
+
fallback_agent_config=fallback_agent_config,
|
190 |
tools=AgentTools(_cfg, agent_config).get_tools(),
|
191 |
topic="Financial data, annual reports and 10-K filings",
|
192 |
custom_instructions=financial_bot_instructions,
|
193 |
agent_progress_callback=agent_progress_callback,
|
194 |
query_logging_callback=query_logging,
|
195 |
verbose=True,
|
|
|
196 |
)
|
197 |
|
198 |
+
agent.report(detailed=False)
|
199 |
return agent
|
200 |
|
201 |
def get_agent_config() -> OmegaConf:
|
requirements.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
-
vectara-agentic==0.2.
|
9 |
torch==2.6.0
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.45.0
|
4 |
streamlit_feedback==0.1.3
|
5 |
uuid==1.30
|
6 |
langdetect==1.0.9
|
7 |
langcodes==3.4.0
|
8 |
+
vectara-agentic==0.2.15
|
9 |
torch==2.6.0
|
st_app.py
CHANGED
@@ -14,22 +14,12 @@ from agent import initialize_agent, get_agent_config
|
|
14 |
|
15 |
initial_prompt = "How can I help you today?"
|
16 |
|
17 |
-
# def pil_to_base64(img):
|
18 |
-
# buffered = BytesIO()
|
19 |
-
# img.save(buffered, format="PNG")
|
20 |
-
# return base64.b64encode(buffered.getvalue()).decode()
|
21 |
-
|
22 |
-
|
23 |
def format_log_msg(log_msg: str):
|
24 |
max_log_msg_size = 500
|
25 |
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...'
|
26 |
|
27 |
def agent_progress_callback(status_type: AgentStatusType, msg: str):
|
28 |
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}'
|
29 |
-
if "log_messages" not in st.session_state:
|
30 |
-
st.session_state.log_messages = [output]
|
31 |
-
else:
|
32 |
-
st.session_state.log_messages.append(output)
|
33 |
st.session_state.log_messages.append(output)
|
34 |
if 'status' in st.session_state:
|
35 |
latest_message = ''
|
@@ -85,6 +75,7 @@ async def launch_bot():
|
|
85 |
else:
|
86 |
st.session_state.agent.clear_memory()
|
87 |
|
|
|
88 |
if 'cfg' not in st.session_state:
|
89 |
cfg = get_agent_config()
|
90 |
st.session_state.cfg = cfg
|
@@ -154,7 +145,7 @@ async def launch_bot():
|
|
154 |
if st.session_state.prompt:
|
155 |
with st.chat_message("assistant", avatar='🤖'):
|
156 |
st.session_state.status = st.status('Processing...', expanded=False)
|
157 |
-
response = st.session_state.agent.
|
158 |
res = escape_dollars_outside_latex(response.response)
|
159 |
|
160 |
#from vectara_agentic.sub_query_workflow import SequentialSubQuestionsWorkflow
|
|
|
14 |
|
15 |
initial_prompt = "How can I help you today?"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def format_log_msg(log_msg: str):
|
18 |
max_log_msg_size = 500
|
19 |
return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...'
|
20 |
|
21 |
def agent_progress_callback(status_type: AgentStatusType, msg: str):
|
22 |
output = f'<span style="color:blue;">{status_type.value}</span>: {msg}'
|
|
|
|
|
|
|
|
|
23 |
st.session_state.log_messages.append(output)
|
24 |
if 'status' in st.session_state:
|
25 |
latest_message = ''
|
|
|
75 |
else:
|
76 |
st.session_state.agent.clear_memory()
|
77 |
|
78 |
+
|
79 |
if 'cfg' not in st.session_state:
|
80 |
cfg = get_agent_config()
|
81 |
st.session_state.cfg = cfg
|
|
|
145 |
if st.session_state.prompt:
|
146 |
with st.chat_message("assistant", avatar='🤖'):
|
147 |
st.session_state.status = st.status('Processing...', expanded=False)
|
148 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
149 |
res = escape_dollars_outside_latex(response.response)
|
150 |
|
151 |
#from vectara_agentic.sub_query_workflow import SequentialSubQuestionsWorkflow
|