Update app.py
Browse files
app.py
CHANGED
|
@@ -12,16 +12,19 @@ def main():
|
|
| 12 |
# Get user input
|
| 13 |
doc = st.text_area("Document")
|
| 14 |
|
| 15 |
-
# Get user choice for stopwords removal
|
| 16 |
-
remove_stopwords = st.checkbox("Remove Stopwords")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Extract keywords
|
| 19 |
if st.button("Extract Keywords"):
|
| 20 |
keywords = kw_model.extract_keywords(doc, stop_words=None if remove_stopwords else "english")
|
| 21 |
|
| 22 |
-
# Get user choice for MMR
|
| 23 |
-
apply_mmr = st.checkbox("Apply Maximal Marginal Relevance (MMR)")
|
| 24 |
-
|
| 25 |
if apply_mmr:
|
| 26 |
# Apply Maximal Marginal Relevance (MMR)
|
| 27 |
selected_keywords = []
|
|
@@ -29,9 +32,8 @@ def main():
|
|
| 29 |
|
| 30 |
# Set the MMR hyperparameters
|
| 31 |
lambda_param = 0.7 # Weight for the trade-off between relevance and diversity
|
| 32 |
-
num_keywords = 5 # Number of keywords to select
|
| 33 |
|
| 34 |
-
for i in range(1,
|
| 35 |
selected_keywords_scores = [kw[1] for kw in selected_keywords]
|
| 36 |
remaining_keywords = [kw for kw in keywords if kw[0] not in [kw[0] for kw in selected_keywords]]
|
| 37 |
mmr_scores = kw_model.maximal_marginal_relevance(doc, remaining_keywords, selected_keywords_scores, lambda_param)
|
|
@@ -40,10 +42,10 @@ def main():
|
|
| 40 |
|
| 41 |
keywords = selected_keywords # Update keywords with MMR-selected keywords
|
| 42 |
|
| 43 |
-
st.write("Keywords:")
|
| 44 |
for keyword, score in keywords:
|
| 45 |
st.write(f"- {keyword} (Score: {score})")
|
| 46 |
|
| 47 |
# Run the app
|
| 48 |
if __name__ == "__main__":
|
| 49 |
-
main()
|
|
|
|
| 12 |
# Get user input
|
| 13 |
doc = st.text_area("Document")
|
| 14 |
|
| 15 |
+
# Get user choice for stopwords removal (default checkbox)
|
| 16 |
+
remove_stopwords = st.checkbox("Remove Stopwords", value=True)
|
| 17 |
+
|
| 18 |
+
# Get user choice for MMR (default checkbox)
|
| 19 |
+
apply_mmr = st.checkbox("Apply Maximal Marginal Relevance (MMR)", value=True)
|
| 20 |
+
|
| 21 |
+
# Get user choice for number of results (slider)
|
| 22 |
+
num_results = st.slider("Number of Results", min_value=1, max_value=30, value=5, step=1)
|
| 23 |
|
| 24 |
# Extract keywords
|
| 25 |
if st.button("Extract Keywords"):
|
| 26 |
keywords = kw_model.extract_keywords(doc, stop_words=None if remove_stopwords else "english")
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
if apply_mmr:
|
| 29 |
# Apply Maximal Marginal Relevance (MMR)
|
| 30 |
selected_keywords = []
|
|
|
|
| 32 |
|
| 33 |
# Set the MMR hyperparameters
|
| 34 |
lambda_param = 0.7 # Weight for the trade-off between relevance and diversity
|
|
|
|
| 35 |
|
| 36 |
+
for i in range(1, num_results):
|
| 37 |
selected_keywords_scores = [kw[1] for kw in selected_keywords]
|
| 38 |
remaining_keywords = [kw for kw in keywords if kw[0] not in [kw[0] for kw in selected_keywords]]
|
| 39 |
mmr_scores = kw_model.maximal_marginal_relevance(doc, remaining_keywords, selected_keywords_scores, lambda_param)
|
|
|
|
| 42 |
|
| 43 |
keywords = selected_keywords # Update keywords with MMR-selected keywords
|
| 44 |
|
| 45 |
+
st.write(f"Top {num_results} Keywords:")
|
| 46 |
for keyword, score in keywords:
|
| 47 |
st.write(f"- {keyword} (Score: {score})")
|
| 48 |
|
| 49 |
# Run the app
|
| 50 |
if __name__ == "__main__":
|
| 51 |
+
main()
|