Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import PyPDF2
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import numpy
|
| 6 |
+
import scipy
|
| 7 |
+
from gtts import gTTS
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from transformers import BartTokenizer
|
| 10 |
+
|
| 11 |
+
def extract_text(pdf_file):
|
| 12 |
+
pdfReader = PyPDF2.PdfReader(pdf_file)
|
| 13 |
+
pageObj = pdfReader.pages[0]
|
| 14 |
+
return pageObj.extract_text()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def summarize_text(text):
|
| 18 |
+
sentences = text.split(". ")
|
| 19 |
+
for i, sentence in enumerate(sentences):
|
| 20 |
+
if "Abstract" in sentence:
|
| 21 |
+
start = i + 1
|
| 22 |
+
end = start + 3
|
| 23 |
+
break
|
| 24 |
+
abstract = ". ".join(sentences[start:end+1])
|
| 25 |
+
|
| 26 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 27 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer=tokenizer)
|
| 28 |
+
summary = summarizer(abstract, max_length=30, min_length=30,
|
| 29 |
+
do_sample=False)
|
| 30 |
+
return summary[0]['summary_text']
|
| 31 |
+
|
| 32 |
+
def text_to_audio(text):
|
| 33 |
+
tts = gTTS(text, lang='en')
|
| 34 |
+
buffer = BytesIO()
|
| 35 |
+
tts.write_to_fp(buffer)
|
| 36 |
+
buffer.seek(0)
|
| 37 |
+
return buffer.read()
|
| 38 |
+
|
| 39 |
+
def audio_pdf(pdf_file):
|
| 40 |
+
text = extract_text(pdf_file)
|
| 41 |
+
summary = summarize_text(text)
|
| 42 |
+
audio = text_to_audio(summary)
|
| 43 |
+
return summary, audio
|
| 44 |
+
|
| 45 |
+
inputs = gr.File()
|
| 46 |
+
summary_text = gr.Text()
|
| 47 |
+
audio_summary = gr.Audio()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
iface = gr.Interface(
|
| 51 |
+
fn=audio_pdf,
|
| 52 |
+
inputs=inputs,
|
| 53 |
+
outputs=[summary_text,audio_summary],
|
| 54 |
+
title="PDF Audio Summarizer 📻",
|
| 55 |
+
description="App that converts an abstract into audio",
|
| 56 |
+
examples=["Attention_is_all_you_need.pdf",
|
| 57 |
+
"ImageNet_Classification.pdf"
|
| 58 |
+
]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
iface.launch()
|