varl42 commited on
Commit
d740958
·
1 Parent(s): 830dbbc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -6,7 +6,7 @@ import numpy
6
  import scipy
7
  from gtts import gTTS
8
  from io import BytesIO
9
- from transformers import BartTokenizer, BartForConditionalGeneration
10
 
11
  def extract_text(pdf_file):
12
  pdfReader = PyPDF2.PdfReader(pdf_file)
@@ -27,14 +27,14 @@ def summarize_text(text):
27
  abstract = ". ".join(sentences[start:end+1])
28
 
29
  # Load BART model & tokenizer
30
- tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
31
- model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
32
 
33
  # Tokenize abstract
34
  inputs = tokenizer(abstract, return_tensors="pt", truncation=True)
35
 
36
  # Generate summary
37
- summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=45, min_length=30, early_stopping=True)
38
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
39
 
40
  return summary
 
6
  import scipy
7
  from gtts import gTTS
8
  from io import BytesIO
9
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
10
 
11
  def extract_text(pdf_file):
12
  pdfReader = PyPDF2.PdfReader(pdf_file)
 
27
  abstract = ". ".join(sentences[start:end+1])
28
 
29
  # Load BART model & tokenizer
30
+ tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
31
+ model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
32
 
33
  # Tokenize abstract
34
  inputs = tokenizer(abstract, return_tensors="pt", truncation=True)
35
 
36
  # Generate summary
37
+ summary_ids = model.generate(inputs['input_ids'], num_beams=5, max_length=45, min_length=30, early_stopping=True)
38
  summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
39
 
40
  return summary