Update app.py
Browse files
app.py
CHANGED
@@ -20,15 +20,15 @@ def summarize_text(text):
|
|
20 |
for i, sentence in enumerate(sentences):
|
21 |
if "Abstract" in sentence:
|
22 |
start = i + 1
|
23 |
-
end = start +
|
24 |
break
|
25 |
|
26 |
# Extract abstract
|
27 |
abstract = ". ".join(sentences[start:end+1])
|
28 |
|
29 |
# Load BART model & tokenizer
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
31 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("
|
32 |
|
33 |
# Tokenize abstract
|
34 |
inputs = tokenizer(abstract,
|
@@ -38,7 +38,7 @@ def summarize_text(text):
|
|
38 |
|
39 |
# Generate summary
|
40 |
summary_ids = model.generate(inputs['input_ids'],
|
41 |
-
num_beams=3,
|
42 |
max_length=50,
|
43 |
min_length=30,
|
44 |
do_sample=False,
|
|
|
20 |
for i, sentence in enumerate(sentences):
|
21 |
if "Abstract" in sentence:
|
22 |
start = i + 1
|
23 |
+
end = start + 5
|
24 |
break
|
25 |
|
26 |
# Extract abstract
|
27 |
abstract = ". ".join(sentences[start:end+1])
|
28 |
|
29 |
# Load BART model & tokenizer
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-base-book-summary")
|
31 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model="pszemraj/led-base-book-summary")
|
32 |
|
33 |
# Tokenize abstract
|
34 |
inputs = tokenizer(abstract,
|
|
|
38 |
|
39 |
# Generate summary
|
40 |
summary_ids = model.generate(inputs['input_ids'],
|
41 |
+
#num_beams=3,
|
42 |
max_length=50,
|
43 |
min_length=30,
|
44 |
do_sample=False,
|