Spaces:
Sleeping
Sleeping
dragonjump
commited on
Commit
·
9559a52
1
Parent(s):
8f52987
update'
Browse files- main.py +55 -21
- main.py.old +78 -0
main.py
CHANGED
@@ -1,34 +1,56 @@
|
|
1 |
from fastapi import FastAPI, Query
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
import torch
|
|
|
|
|
|
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
processor = AutoProcessor.from_pretrained(
|
12 |
-
|
13 |
min_pixels=min_pixels,
|
14 |
-
max_pixels=max_pixels
|
15 |
)
|
16 |
-
|
17 |
-
|
|
|
18 |
torch_dtype=torch.bfloat16,
|
19 |
device_map="auto",
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
23 |
@app.get("/")
|
24 |
def read_root():
|
25 |
-
return {"message": "API is live. Use the /predict
|
26 |
|
27 |
@app.get("/predict")
|
28 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
29 |
messages = [
|
30 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
31 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
]
|
33 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
34 |
image_inputs, video_inputs = process_vision_info(messages)
|
@@ -38,31 +60,43 @@ def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
|
38 |
videos=video_inputs,
|
39 |
padding=True,
|
40 |
return_tensors="pt",
|
41 |
-
).to(
|
42 |
with torch.no_grad():
|
43 |
-
generated_ids =
|
44 |
-
generated_ids_trimmed = [
|
|
|
|
|
45 |
output_texts = processor.batch_decode(
|
46 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
47 |
)
|
48 |
return {"response": output_texts[0]}
|
49 |
|
50 |
@app.get("/chat")
|
51 |
-
def chat(
|
52 |
messages = [
|
53 |
-
{"role": "system", "content": "You are a helpful assistant
|
54 |
-
{"role": "user", "content": [
|
55 |
]
|
56 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
57 |
inputs = processor(
|
58 |
-
text=[text],
|
59 |
padding=True,
|
60 |
return_tensors="pt",
|
61 |
-
).to(
|
62 |
with torch.no_grad():
|
63 |
-
generated_ids =
|
64 |
-
generated_ids_trimmed = [
|
|
|
|
|
65 |
output_texts = processor.batch_decode(
|
66 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
67 |
)
|
68 |
return {"response": output_texts[0]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, Query
|
2 |
+
from transformers import (
|
3 |
+
AutoProcessor,
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
)
|
7 |
from qwen_vl_utils import process_vision_info
|
8 |
import torch
|
9 |
+
import logging
|
10 |
+
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
15 |
+
# Qwen2.5-VL Model Setup
|
16 |
+
qwen_checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
17 |
+
min_pixels = 256 * 28 * 28
|
18 |
+
max_pixels = 1280 * 28 * 28
|
19 |
+
|
20 |
processor = AutoProcessor.from_pretrained(
|
21 |
+
qwen_checkpoint,
|
22 |
min_pixels=min_pixels,
|
23 |
+
max_pixels=max_pixels,
|
24 |
)
|
25 |
+
|
26 |
+
qwen_model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
qwen_checkpoint,
|
28 |
torch_dtype=torch.bfloat16,
|
29 |
device_map="auto",
|
30 |
+
)
|
31 |
+
|
32 |
+
# LLaMA Model Setup
|
33 |
+
llama_model_name = "path/to/llama-uncensored-model"
|
34 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_name)
|
35 |
+
llama_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
llama_model_name, torch_dtype=torch.float16, device_map="auto"
|
37 |
)
|
38 |
|
39 |
@app.get("/")
|
40 |
def read_root():
|
41 |
+
return {"message": "API is live. Use the /predict, /chat, or /llama_chat endpoints."}
|
42 |
|
43 |
@app.get("/predict")
|
44 |
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
45 |
messages = [
|
46 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
47 |
+
{
|
48 |
+
"role": "user",
|
49 |
+
"content": [
|
50 |
+
{"type": "image", "image": image_url},
|
51 |
+
{"type": "text", "text": prompt},
|
52 |
+
],
|
53 |
+
},
|
54 |
]
|
55 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
56 |
image_inputs, video_inputs = process_vision_info(messages)
|
|
|
60 |
videos=video_inputs,
|
61 |
padding=True,
|
62 |
return_tensors="pt",
|
63 |
+
).to(qwen_model.device)
|
64 |
with torch.no_grad():
|
65 |
+
generated_ids = qwen_model.generate(**inputs, max_new_tokens=128)
|
66 |
+
generated_ids_trimmed = [
|
67 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids)
|
68 |
+
]
|
69 |
output_texts = processor.batch_decode(
|
70 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
71 |
)
|
72 |
return {"response": output_texts[0]}
|
73 |
|
74 |
@app.get("/chat")
|
75 |
+
def chat(prompt: str = Query(...)):
|
76 |
messages = [
|
77 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
78 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]},
|
79 |
]
|
80 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
81 |
inputs = processor(
|
82 |
+
text=[text],
|
83 |
padding=True,
|
84 |
return_tensors="pt",
|
85 |
+
).to(qwen_model.device)
|
86 |
with torch.no_grad():
|
87 |
+
generated_ids = qwen_model.generate(**inputs, max_new_tokens=128)
|
88 |
+
generated_ids_trimmed = [
|
89 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids)
|
90 |
+
]
|
91 |
output_texts = processor.batch_decode(
|
92 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
93 |
)
|
94 |
return {"response": output_texts[0]}
|
95 |
+
|
96 |
+
@app.get("/llama_chat")
|
97 |
+
def llama_chat(prompt: str = Query(...)):
|
98 |
+
inputs = llama_tokenizer(prompt, return_tensors="pt").to(llama_model.device)
|
99 |
+
with torch.no_grad():
|
100 |
+
outputs = llama_model.generate(**inputs, max_new_tokens=128)
|
101 |
+
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
102 |
+
return {"response": response}
|
main.py.old
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
|
7 |
+
logging.basicConfig(level=logging.INFO)
|
8 |
+
|
9 |
+
try:
|
10 |
+
# Code that may raise an exception
|
11 |
+
x = 1 / 0
|
12 |
+
except ZeroDivisionError as e:
|
13 |
+
logging.error("Error occurred: %s", e)
|
14 |
+
# Take alternative action to recover from the exception
|
15 |
+
|
16 |
+
app = FastAPI()
|
17 |
+
|
18 |
+
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
19 |
+
min_pixels = 256*28*28
|
20 |
+
max_pixels = 1280*28*28
|
21 |
+
processor = AutoProcessor.from_pretrained(
|
22 |
+
checkpoint,
|
23 |
+
min_pixels=min_pixels,
|
24 |
+
max_pixels=max_pixels
|
25 |
+
)
|
26 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
27 |
+
checkpoint,
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
device_map="auto",
|
30 |
+
# attn_implementation="flash_attention_2",
|
31 |
+
)
|
32 |
+
|
33 |
+
@app.get("/")
|
34 |
+
def read_root():
|
35 |
+
return {"message": "API is live. Use the /predict endpoint."}
|
36 |
+
|
37 |
+
@app.get("/predict")
|
38 |
+
def predict(image_url: str = Query(...), prompt: str = Query(...)):
|
39 |
+
messages = [
|
40 |
+
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
41 |
+
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]},
|
42 |
+
]
|
43 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
44 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
45 |
+
inputs = processor(
|
46 |
+
text=[text],
|
47 |
+
images=image_inputs,
|
48 |
+
videos=video_inputs,
|
49 |
+
padding=True,
|
50 |
+
return_tensors="pt",
|
51 |
+
).to(model.device)
|
52 |
+
with torch.no_grad():
|
53 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
54 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
55 |
+
output_texts = processor.batch_decode(
|
56 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
57 |
+
)
|
58 |
+
return {"response": output_texts[0]}
|
59 |
+
|
60 |
+
@app.get("/chat")
|
61 |
+
def chat( prompt: str = Query(...)):
|
62 |
+
messages = [
|
63 |
+
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
64 |
+
{"role": "user", "content": [ {"type": "text", "text": prompt}]},
|
65 |
+
]
|
66 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
67 |
+
inputs = processor(
|
68 |
+
text=[text],
|
69 |
+
padding=True,
|
70 |
+
return_tensors="pt",
|
71 |
+
).to(model.device)
|
72 |
+
with torch.no_grad():
|
73 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
74 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
75 |
+
output_texts = processor.batch_decode(
|
76 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
77 |
+
)
|
78 |
+
return {"response": output_texts[0]}
|