Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import psycopg2 | |
import os | |
# Load DB credentials from Hugging Face secrets or environment variables | |
DB_HOST = os.getenv("DB_HOST") | |
DB_PORT = os.getenv("DB_PORT", "5432") | |
DB_NAME = os.getenv("DB_NAME") | |
DB_USER = os.getenv("DB_USER") | |
DB_PASSWORD = os.getenv("DB_PASSWORD") | |
def get_data(): | |
try: | |
conn = psycopg2.connect( | |
host=DB_HOST, | |
port=DB_PORT, | |
dbname=DB_NAME, | |
user=DB_USER, | |
password=DB_PASSWORD, | |
sslmode="require" | |
) | |
query = "SELECT country, year, section, question_code, question_text, answer_code, answer_text FROM survey_info;" | |
df = pd.read_sql_query(query, conn) | |
conn.close() | |
return df | |
except Exception as e: | |
st.error(f"Failed to connect to the database: {e}") | |
st.stop() | |
# Load data | |
df = get_data() | |
# Streamlit UI | |
st.title("π CGD Survey Explorer (Live DB)") | |
st.sidebar.header("π Filter Questions") | |
# Multiselect filters with default = show all | |
country_options = sorted(df["country"].dropna().unique()) | |
year_options = sorted(df["year"].dropna().unique()) | |
selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options) | |
selected_years = st.sidebar.multiselect("Select Year(s)", year_options) | |
keyword = st.sidebar.text_input("Keyword Search", "") | |
group_by_question = st.sidebar.checkbox("Group by Question Text") | |
# Apply filters | |
filtered = df[ | |
(df["country"].isin(selected_countries) if selected_countries else True) & | |
(df["year"].isin(selected_years) if selected_years else True) & | |
(df["question_text"].str.contains(keyword, case=False, na=False)) | |
] | |
# Output | |
if group_by_question: | |
st.subheader("π Grouped by Question Text") | |
grouped = ( | |
filtered.groupby("question_text") | |
.agg({ | |
"country": lambda x: sorted(set(x)), | |
"year": lambda x: sorted(set(x)), | |
"answer_text": lambda x: list(x)[:3] # preview up to 3 answers | |
}) | |
.reset_index() | |
.rename(columns={ | |
"country": "Countries", | |
"year": "Years", | |
"answer_text": "Sample Answers" | |
}) | |
) | |
st.dataframe(grouped) | |
if grouped.empty: | |
st.info("No questions found with current filters.") | |
else: | |
# Context-aware heading | |
heading_parts = [] | |
if selected_countries: | |
heading_parts.append("Countries: " + ", ".join(selected_countries)) | |
if selected_years: | |
heading_parts.append("Years: " + ", ".join(map(str, selected_years))) | |
if heading_parts: | |
st.markdown("### Results for " + " | ".join(heading_parts)) | |
else: | |
st.markdown("### Results for All Countries and Years") | |
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]]) | |
if filtered.empty: | |
st.info("No matching questions found.") | |