Spaces:
Running
Running
File size: 2,917 Bytes
d3a33c8 23381bb 35c1ade 1068edf 23381bb 4a806db 23381bb 4b5445a 23381bb d3a33c8 443384f 4e71d04 81d02b5 443384f 81d02b5 4e71d04 81d02b5 4e71d04 81d02b5 443384f 4e71d04 443384f 4e71d04 443384f 81d02b5 443384f 23381bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import streamlit as st
import pandas as pd
import psycopg2
import os
# Load DB credentials from Hugging Face secrets or environment variables
DB_HOST = os.getenv("DB_HOST")
DB_PORT = os.getenv("DB_PORT", "5432")
DB_NAME = os.getenv("DB_NAME")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")
@st.cache_data(ttl=600)
def get_data():
try:
conn = psycopg2.connect(
host=DB_HOST,
port=DB_PORT,
dbname=DB_NAME,
user=DB_USER,
password=DB_PASSWORD,
sslmode="require"
)
query = "SELECT country, year, section, question_code, question_text, answer_code, answer_text FROM survey_info;"
df = pd.read_sql_query(query, conn)
conn.close()
return df
except Exception as e:
st.error(f"Failed to connect to the database: {e}")
st.stop()
# Load data
df = get_data()
# Streamlit UI
st.title("๐ CGD Survey Explorer (Live DB)")
st.sidebar.header("๐ Filter Questions")
# Multiselect filters with default = show all
country_options = sorted(df["country"].dropna().unique())
year_options = sorted(df["year"].dropna().unique())
selected_countries = st.sidebar.multiselect("Select Country/Countries", country_options)
selected_years = st.sidebar.multiselect("Select Year(s)", year_options)
keyword = st.sidebar.text_input("Keyword Search", "")
group_by_question = st.sidebar.checkbox("Group by Question Text")
# Apply filters
filtered = df[
(df["country"].isin(selected_countries) if selected_countries else True) &
(df["year"].isin(selected_years) if selected_years else True) &
(df["question_text"].str.contains(keyword, case=False, na=False))
]
# Output
if group_by_question:
st.subheader("๐ Grouped by Question Text")
grouped = (
filtered.groupby("question_text")
.agg({
"country": lambda x: sorted(set(x)),
"year": lambda x: sorted(set(x)),
"answer_text": lambda x: list(x)[:3] # preview up to 3 answers
})
.reset_index()
.rename(columns={
"country": "Countries",
"year": "Years",
"answer_text": "Sample Answers"
})
)
st.dataframe(grouped)
if grouped.empty:
st.info("No questions found with current filters.")
else:
# Context-aware heading
heading_parts = []
if selected_countries:
heading_parts.append("Countries: " + ", ".join(selected_countries))
if selected_years:
heading_parts.append("Years: " + ", ".join(map(str, selected_years)))
if heading_parts:
st.markdown("### Results for " + " | ".join(heading_parts))
else:
st.markdown("### Results for All Countries and Years")
st.dataframe(filtered[["country", "year", "question_text", "answer_text"]])
if filtered.empty:
st.info("No matching questions found.")
|