File size: 6,433 Bytes
f7d7a98
9a96b62
f7d7a98
9a96b62
f7d7a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a96b62
f7d7a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a96b62
 
f7d7a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a96b62
 
f7d7a98
 
 
 
 
 
9a96b62
 
f7d7a98
 
 
9a96b62
f7d7a98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# app_panel.py – Panel-based CGD Survey Explorer

import os, io, json, gc
import panel as pn
import pandas as pd
import boto3, torch
from sentence_transformers import SentenceTransformer, util
import psycopg2

pn.extension()

# ───────────────────────────────────────────────
# 1) Data / Embeddings Loaders
# ───────────────────────────────────────────────
DB_HOST = os.getenv("DB_HOST")
DB_PORT = os.getenv("DB_PORT", "5432")
DB_NAME = os.getenv("DB_NAME")
DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")

@pn.cache()
def get_data():
    conn = psycopg2.connect(
        host=DB_HOST, port=DB_PORT,
        dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD,
        sslmode="require"
    )
    df_ = pd.read_sql_query("""
        SELECT id, country, year, section,
               question_code, question_text,
               answer_code,  answer_text
          FROM survey_info;
    """, conn)
    conn.close()
    return df_

df = get_data()
row_lookup = {row.id: i for i, row in df.iterrows()}

@pn.cache()
def load_embeddings():
    BUCKET, KEY = "cgd-embeddings-bucket", "survey_info_embeddings.pt"
    buf = io.BytesIO()
    boto3.client("s3").download_fileobj(BUCKET, KEY, buf)
    buf.seek(0)
    ckpt = torch.load(buf, map_location="cpu")
    buf.close(); gc.collect()
    return ckpt["ids"], ckpt["embeddings"]

ids_list, emb_tensor = load_embeddings()

@pn.cache()
def get_st_model():
    return SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device="cpu")

# ───────────────────────────────────────────────
# 2) Widgets
# ───────────────────────────────────────────────
country_opts = sorted(df["country"].dropna().unique())
year_opts = sorted(df["year"].dropna().unique())

w_countries = pn.widgets.MultiSelect(name="Countries", options=country_opts)
w_years = pn.widgets.MultiSelect(name="Years", options=year_opts)
w_keyword = pn.widgets.TextInput(name="Keyword Search", placeholder="Search questions or answers")
w_group = pn.widgets.Checkbox(name="Group by Question Text", value=False)

# Semantic search
w_semquery = pn.widgets.TextInput(name="Semantic Query")
w_search_button = pn.widgets.Button(name="Search", button_type="primary", disabled=False)

# ───────────────────────────────────────────────
# 3) Filtering Logic
# ───────────────────────────────────────────────
@pn.depends(w_countries, w_years, w_keyword, w_group)
def keyword_filter(countries, years, keyword, group):
    filt = df.copy()
    if countries:
        filt = filt[filt["country"].isin(countries)]
    if years:
        filt = filt[filt["year"].isin(years)]
    if keyword:
        filt = filt[
            filt["question_text"].str.contains(keyword, case=False, na=False) |
            filt["answer_text"].str.contains(keyword, case=False, na=False) |
            filt["question_code"].astype(str).str.contains(keyword, case=False, na=False)
        ]

    if group:
        grouped = (
            filt.groupby("question_text")
            .agg({
                "country": lambda x: sorted(set(x)),
                "year": lambda x: sorted(set(x)),
                "answer_text": lambda x: list(x)[:3]
            })
            .reset_index()
            .rename(columns={
                "country": "Countries",
                "year": "Years",
                "answer_text": "Sample Answers"
            })
        )
        return pn.pane.DataFrame(grouped, sizing_mode="stretch_width", height=400)

    return pn.pane.DataFrame(
        filt[["country", "year", "question_text", "answer_text"]],
        sizing_mode="stretch_width", height=400
    )

# ───────────────────────────────────────────────
# 4) Semantic Search Callback
# ───────────────────────────────────────────────
def semantic_search(event=None):
    query = w_semquery.value.strip()
    if not query:
        return

    model = get_st_model()
    q_vec = model.encode(query, convert_to_tensor=True, device="cpu").cpu()
    sims = util.cos_sim(q_vec, emb_tensor)[0]
    top_vals, top_idx = torch.topk(sims, k=50)

    sem_ids = [ids_list[i] for i in top_idx.tolist()]
    sem_rows = df.loc[df["id"].isin(sem_ids)].copy()
    score_map = dict(zip(sem_ids, top_vals.tolist()))
    sem_rows["Score"] = sem_rows["id"].map(score_map)
    sem_rows = sem_rows.sort_values("Score", ascending=False)

    # Get keyword-filtered data
    keyword_df = keyword_filter(
        w_countries.value,
        w_years.value,
        w_keyword.value,
        False
    ).object

    remainder = keyword_df.loc[~keyword_df["id"].isin(sem_ids)].copy()
    remainder["Score"] = ""

    combined = pd.concat([sem_rows, remainder], ignore_index=True)

    result_pane.object = combined[["Score", "country", "year", "question_text", "answer_text"]]

w_search_button.on_click(semantic_search)

result_pane = pn.pane.DataFrame(height=500, sizing_mode="stretch_width")

# ───────────────────────────────────────────────
# 5) Layout
# ───────────────────────────────────────────────
sidebar = pn.Column(
    "## πŸ” Filter Questions",
    w_countries, w_years, w_keyword, w_group,
    pn.Spacer(height=20),
    "## 🧠 Semantic Search",
    w_semquery, w_search_button,
    width=300
)

main = pn.Column(
    pn.pane.Markdown("## 🌍 CGD Survey Explorer"),
    pn.Tabs(
        ("Filtered Results", keyword_filter),
        ("Semantic Search Results", result_pane),
    )
)

pn.template.FastListTemplate(
    title="CGD Survey Explorer",
    sidebar=sidebar,
    main=main,
    theme_toggle=True,
).servable()