Commit
·
35f470e
1
Parent(s):
4160cfa
added markets creator info for the tools tab
Browse files- app.py +18 -26
- scripts/markets.py +28 -0
- scripts/tools.py +6 -1
- tabs/metrics.py +7 -2
- tabs/tool_win.py +109 -31
- tabs/trades.py +0 -34
app.py
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
from datetime import datetime, timedelta
|
| 2 |
import gradio as gr
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
import pandas as pd
|
| 5 |
-
import seaborn as sns
|
| 6 |
import duckdb
|
| 7 |
import logging
|
| 8 |
from tabs.trades import (
|
|
@@ -11,10 +9,6 @@ from tabs.trades import (
|
|
| 11 |
get_overall_by_market_trades,
|
| 12 |
get_overall_winning_trades,
|
| 13 |
get_overall_winning_by_market_trades,
|
| 14 |
-
plot_trades_by_week,
|
| 15 |
-
plot_trades_per_market_by_week,
|
| 16 |
-
plot_winning_trades_by_week,
|
| 17 |
-
plot_winning_trades_per_market_by_week,
|
| 18 |
integrated_plot_trades_per_market_by_week,
|
| 19 |
integrated_plot_winning_trades_per_market_by_week,
|
| 20 |
)
|
|
@@ -31,24 +25,20 @@ from tabs.metrics import (
|
|
| 31 |
)
|
| 32 |
|
| 33 |
from tabs.tool_win import (
|
| 34 |
-
|
| 35 |
get_tool_winning_rate_by_market,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
plot_tool_winnings_by_tool,
|
| 39 |
)
|
| 40 |
|
| 41 |
from tabs.tool_accuracy import (
|
| 42 |
plot_tools_weighted_accuracy_rotated_graph,
|
| 43 |
plot_tools_accuracy_rotated_graph,
|
| 44 |
compute_weighted_accuracy,
|
| 45 |
-
plot_tools_accuracy_graph,
|
| 46 |
-
plot_tools_weighted_accuracy_graph,
|
| 47 |
)
|
| 48 |
|
| 49 |
from tabs.invalid_markets import (
|
| 50 |
plot_daily_dist_invalid_trades,
|
| 51 |
-
plot_ratio_invalid_trades_per_market,
|
| 52 |
plot_top_invalid_markets,
|
| 53 |
plot_daily_nr_invalid_markets,
|
| 54 |
)
|
|
@@ -160,9 +150,7 @@ def prepare_data():
|
|
| 160 |
tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
|
| 161 |
print(trades_df.info())
|
| 162 |
|
| 163 |
-
tools_df
|
| 164 |
-
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
|
| 165 |
-
|
| 166 |
trades_df = prepare_trades(trades_df)
|
| 167 |
|
| 168 |
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
|
|
@@ -184,8 +172,8 @@ demo = gr.Blocks()
|
|
| 184 |
|
| 185 |
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
|
| 186 |
error_overall_df = get_error_data_overall(error_df=error_df)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
trades_count_df = get_overall_trades(trades_df=trades_df)
|
| 190 |
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
|
| 191 |
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
|
|
@@ -261,20 +249,20 @@ with demo:
|
|
| 261 |
with gr.Row():
|
| 262 |
winning_selector = gr.Dropdown(
|
| 263 |
label="Select the tool metric",
|
| 264 |
-
choices=tool_metric_choices,
|
| 265 |
value=default_tool_metric,
|
| 266 |
)
|
| 267 |
|
| 268 |
with gr.Row():
|
| 269 |
# plot_tool_metrics
|
| 270 |
-
winning_plot =
|
| 271 |
-
|
| 272 |
winning_selector=default_tool_metric,
|
| 273 |
)
|
| 274 |
|
| 275 |
def update_tool_winnings_overall_plot(winning_selector):
|
| 276 |
-
return
|
| 277 |
-
|
| 278 |
)
|
| 279 |
|
| 280 |
winning_selector.change(
|
|
@@ -297,12 +285,16 @@ with demo:
|
|
| 297 |
)
|
| 298 |
|
| 299 |
with gr.Row():
|
| 300 |
-
tool_winnings_by_tool_plot =
|
| 301 |
-
|
|
|
|
|
|
|
| 302 |
)
|
| 303 |
|
| 304 |
def update_tool_winnings_by_tool_plot(tool):
|
| 305 |
-
return
|
|
|
|
|
|
|
| 306 |
|
| 307 |
sel_tool.change(
|
| 308 |
update_tool_winnings_by_tool_plot,
|
|
|
|
| 1 |
from datetime import datetime, timedelta
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import pandas as pd
|
|
|
|
| 4 |
import duckdb
|
| 5 |
import logging
|
| 6 |
from tabs.trades import (
|
|
|
|
| 9 |
get_overall_by_market_trades,
|
| 10 |
get_overall_winning_trades,
|
| 11 |
get_overall_winning_by_market_trades,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
integrated_plot_trades_per_market_by_week,
|
| 13 |
integrated_plot_winning_trades_per_market_by_week,
|
| 14 |
)
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
from tabs.tool_win import (
|
| 28 |
+
prepare_tools,
|
| 29 |
get_tool_winning_rate_by_market,
|
| 30 |
+
integrated_plot_tool_winnings_overall_per_market_by_week,
|
| 31 |
+
integrated_tool_winnings_by_tool_per_market,
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
from tabs.tool_accuracy import (
|
| 35 |
plot_tools_weighted_accuracy_rotated_graph,
|
| 36 |
plot_tools_accuracy_rotated_graph,
|
| 37 |
compute_weighted_accuracy,
|
|
|
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
from tabs.invalid_markets import (
|
| 41 |
plot_daily_dist_invalid_trades,
|
|
|
|
| 42 |
plot_top_invalid_markets,
|
| 43 |
plot_daily_nr_invalid_markets,
|
| 44 |
)
|
|
|
|
| 150 |
tools_df, trades_df, tools_accuracy_info, invalid_trades = get_all_data()
|
| 151 |
print(trades_df.info())
|
| 152 |
|
| 153 |
+
tools_df = prepare_tools(tools_df)
|
|
|
|
|
|
|
| 154 |
trades_df = prepare_trades(trades_df)
|
| 155 |
|
| 156 |
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
|
|
|
|
| 172 |
|
| 173 |
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
|
| 174 |
error_overall_df = get_error_data_overall(error_df=error_df)
|
| 175 |
+
winning_df = get_tool_winning_rate_by_market(tools_df, inc_tools=INC_TOOLS)
|
| 176 |
+
# preparing data for the trades graph
|
| 177 |
trades_count_df = get_overall_trades(trades_df=trades_df)
|
| 178 |
trades_winning_rate_df = get_overall_winning_trades(trades_df=trades_df)
|
| 179 |
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
|
|
|
|
| 249 |
with gr.Row():
|
| 250 |
winning_selector = gr.Dropdown(
|
| 251 |
label="Select the tool metric",
|
| 252 |
+
choices=list(tool_metric_choices.keys()),
|
| 253 |
value=default_tool_metric,
|
| 254 |
)
|
| 255 |
|
| 256 |
with gr.Row():
|
| 257 |
# plot_tool_metrics
|
| 258 |
+
winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
|
| 259 |
+
winning_df=winning_df,
|
| 260 |
winning_selector=default_tool_metric,
|
| 261 |
)
|
| 262 |
|
| 263 |
def update_tool_winnings_overall_plot(winning_selector):
|
| 264 |
+
return integrated_plot_tool_winnings_overall_per_market_by_week(
|
| 265 |
+
winning_df=winning_df, winning_selector=winning_selector
|
| 266 |
)
|
| 267 |
|
| 268 |
winning_selector.change(
|
|
|
|
| 285 |
)
|
| 286 |
|
| 287 |
with gr.Row():
|
| 288 |
+
tool_winnings_by_tool_plot = (
|
| 289 |
+
integrated_tool_winnings_by_tool_per_market(
|
| 290 |
+
wins_df=winning_df, tool=INC_TOOLS[0]
|
| 291 |
+
)
|
| 292 |
)
|
| 293 |
|
| 294 |
def update_tool_winnings_by_tool_plot(tool):
|
| 295 |
+
return integrated_tool_winnings_by_tool_per_market(
|
| 296 |
+
wins_df=winning_df, tool=tool
|
| 297 |
+
)
|
| 298 |
|
| 299 |
sel_tool.change(
|
| 300 |
update_tool_winnings_by_tool_plot,
|
scripts/markets.py
CHANGED
|
@@ -250,5 +250,33 @@ def etl(filename: Optional[str] = None) -> pd.DataFrame:
|
|
| 250 |
return fpmms
|
| 251 |
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
if __name__ == "__main__":
|
| 254 |
etl("all_fpmms.parquet")
|
|
|
|
| 250 |
return fpmms
|
| 251 |
|
| 252 |
|
| 253 |
+
def add_market_creator(tools: pd.DataFrame) -> None:
|
| 254 |
+
# Check if fpmmTrades.parquet is in the same directory
|
| 255 |
+
try:
|
| 256 |
+
trades_filename = "fpmmTrades.parquet"
|
| 257 |
+
fpmms_trades = pd.read_parquet(DATA_DIR / trades_filename)
|
| 258 |
+
except FileNotFoundError:
|
| 259 |
+
print("Error: fpmmTrades.parquet not found. No market creator added")
|
| 260 |
+
return
|
| 261 |
+
tools["market_creator"] = ""
|
| 262 |
+
# traverse the list of traders
|
| 263 |
+
traders_list = list(tools.trader_address.unique())
|
| 264 |
+
for trader_address in traders_list:
|
| 265 |
+
market_creator = ""
|
| 266 |
+
try:
|
| 267 |
+
trades = fpmms_trades[fpmms_trades["trader_address"] == trader_address]
|
| 268 |
+
market_creator = trades.iloc[0]["market_creator"] # first value is enough
|
| 269 |
+
except Exception:
|
| 270 |
+
print(f"ERROR getting the market creator of {trader_address}")
|
| 271 |
+
continue
|
| 272 |
+
# update
|
| 273 |
+
tools.loc[tools["trader_address"] == trader_address, "market_creator"] = (
|
| 274 |
+
market_creator
|
| 275 |
+
)
|
| 276 |
+
# filter those tools where we don't have market creator info
|
| 277 |
+
tools = tools.loc[tools["market_creator"] != ""]
|
| 278 |
+
return tools
|
| 279 |
+
|
| 280 |
+
|
| 281 |
if __name__ == "__main__":
|
| 282 |
etl("all_fpmms.parquet")
|
scripts/tools.py
CHANGED
|
@@ -45,6 +45,7 @@ from urllib3.exceptions import (
|
|
| 45 |
)
|
| 46 |
from web3 import Web3, HTTPProvider
|
| 47 |
from web3.exceptions import MismatchedABI
|
|
|
|
| 48 |
from web3.types import BlockParams
|
| 49 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 50 |
from utils import (
|
|
@@ -586,7 +587,11 @@ def parse_store_json_events_parallel(
|
|
| 586 |
contents.append(current_mech_contents)
|
| 587 |
|
| 588 |
tools = pd.concat(contents, ignore_index=True)
|
| 589 |
-
print(f"Length of the
|
|
|
|
|
|
|
|
|
|
|
|
|
| 590 |
print(tools.info())
|
| 591 |
try:
|
| 592 |
if "result" in tools.columns:
|
|
|
|
| 45 |
)
|
| 46 |
from web3 import Web3, HTTPProvider
|
| 47 |
from web3.exceptions import MismatchedABI
|
| 48 |
+
from markets import add_market_creator
|
| 49 |
from web3.types import BlockParams
|
| 50 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 51 |
from utils import (
|
|
|
|
| 587 |
contents.append(current_mech_contents)
|
| 588 |
|
| 589 |
tools = pd.concat(contents, ignore_index=True)
|
| 590 |
+
print(f"Adding market creators info. Length of the tools file = {tools}")
|
| 591 |
+
tools = add_market_creator(tools)
|
| 592 |
+
print(
|
| 593 |
+
f"Length of the tools dataframe after adding market creators info= {len(tools)}"
|
| 594 |
+
)
|
| 595 |
print(tools.info())
|
| 596 |
try:
|
| 597 |
if "result" in tools.columns:
|
tabs/metrics.py
CHANGED
|
@@ -10,10 +10,15 @@ trade_metric_choices = [
|
|
| 10 |
"ROI",
|
| 11 |
]
|
| 12 |
|
| 13 |
-
tool_metric_choices =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
default_trade_metric = "ROI"
|
| 16 |
-
default_tool_metric = "
|
| 17 |
|
| 18 |
HEIGHT = 600
|
| 19 |
WIDTH = 1000
|
|
|
|
| 10 |
"ROI",
|
| 11 |
]
|
| 12 |
|
| 13 |
+
tool_metric_choices = {
|
| 14 |
+
"Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
|
| 15 |
+
"Total Weekly Inaccurate Nr of Mech Tool Responses": "losses",
|
| 16 |
+
"Total Weekly Accurate Nr of Mech Tool Responses": "wins",
|
| 17 |
+
"Total Weekly Nr of Mech Tool Requests": "total_request",
|
| 18 |
+
}
|
| 19 |
|
| 20 |
default_trade_metric = "ROI"
|
| 21 |
+
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
|
| 22 |
|
| 23 |
HEIGHT = 600
|
| 24 |
WIDTH = 1000
|
tabs/tool_win.py
CHANGED
|
@@ -1,12 +1,31 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
from typing import List
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
HEIGHT = 600
|
| 7 |
WIDTH = 1000
|
| 8 |
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 11 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 12 |
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
|
@@ -68,7 +87,7 @@ def get_tool_winning_rate_by_market(
|
|
| 68 |
wins["total_request"] = wins[0] + wins[1]
|
| 69 |
wins.columns = wins.columns.astype(str)
|
| 70 |
# Convert request_month_year_week to string and explicitly set type for Altair
|
| 71 |
-
wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
|
| 72 |
return wins
|
| 73 |
|
| 74 |
|
|
@@ -83,17 +102,6 @@ def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 83 |
return overall_wins
|
| 84 |
|
| 85 |
|
| 86 |
-
def get_overall_winning_rate(wins_df: pd.DataFrame) -> pd.DataFrame:
|
| 87 |
-
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 88 |
-
overall_wins = (
|
| 89 |
-
wins_df.groupby("request_month_year_week")
|
| 90 |
-
.agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
|
| 91 |
-
.rename(columns={"0": "losses", "1": "wins"})
|
| 92 |
-
.reset_index()
|
| 93 |
-
)
|
| 94 |
-
return overall_wins
|
| 95 |
-
|
| 96 |
-
|
| 97 |
def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
| 98 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 99 |
overall_wins = (
|
|
@@ -125,39 +133,68 @@ def plot_tool_winnings_overall(
|
|
| 125 |
)
|
| 126 |
|
| 127 |
|
| 128 |
-
def
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
) -> gr.Plot:
|
| 131 |
-
# TODO Pending final implementation
|
| 132 |
-
"""Plots the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 133 |
-
# adding the total
|
| 134 |
-
wins_df_all = tools_df.copy(deep=True)
|
| 135 |
-
wins_df_all["market_creator"] = "all"
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
| 141 |
)
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
fig = px.bar(
|
| 144 |
-
|
| 145 |
x="request_month_year_week",
|
| 146 |
-
y=
|
| 147 |
color="market_creator",
|
| 148 |
barmode="group",
|
| 149 |
-
color_discrete_sequence=["
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
)
|
| 151 |
fig.update_layout(
|
| 152 |
xaxis_title="Week",
|
| 153 |
-
yaxis_title=
|
| 154 |
legend=dict(yanchor="top", y=0.5),
|
| 155 |
)
|
| 156 |
fig.update_layout(width=WIDTH, height=HEIGHT)
|
| 157 |
fig.update_xaxes(tickformat="%b %d\n%Y")
|
| 158 |
-
return gr.Plot(
|
| 159 |
-
value=fig,
|
| 160 |
-
)
|
| 161 |
|
| 162 |
|
| 163 |
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
@@ -176,3 +213,44 @@ def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
| 176 |
height=HEIGHT,
|
| 177 |
width=WIDTH,
|
| 178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import gradio as gr
|
| 3 |
from typing import List
|
| 4 |
+
from tabs.metrics import tool_metric_choices
|
| 5 |
+
import plotly.express as px
|
| 6 |
|
| 7 |
|
| 8 |
HEIGHT = 600
|
| 9 |
WIDTH = 1000
|
| 10 |
|
| 11 |
|
| 12 |
+
def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
|
| 13 |
+
tools["request_time"] = pd.to_datetime(tools["request_time"])
|
| 14 |
+
tools = tools.sort_values(by="request_time", ascending=True)
|
| 15 |
+
|
| 16 |
+
tools["request_month_year_week"] = (
|
| 17 |
+
pd.to_datetime(tools["request_time"]).dt.to_period("W").dt.strftime("%b-%d")
|
| 18 |
+
)
|
| 19 |
+
# preparing the tools graph
|
| 20 |
+
# adding the total
|
| 21 |
+
tools_all = tools.copy(deep=True)
|
| 22 |
+
tools_all["market_creator"] = "all"
|
| 23 |
+
# merging both dataframes
|
| 24 |
+
tools = pd.concat([tools, tools_all], ignore_index=True)
|
| 25 |
+
tools = tools.sort_values(by="request_time", ascending=True)
|
| 26 |
+
return tools
|
| 27 |
+
|
| 28 |
+
|
| 29 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
| 30 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
| 31 |
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
|
|
|
| 87 |
wins["total_request"] = wins[0] + wins[1]
|
| 88 |
wins.columns = wins.columns.astype(str)
|
| 89 |
# Convert request_month_year_week to string and explicitly set type for Altair
|
| 90 |
+
# wins["request_month_year_week"] = wins["request_month_year_week"].astype(str)
|
| 91 |
return wins
|
| 92 |
|
| 93 |
|
|
|
|
| 102 |
return overall_wins
|
| 103 |
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
|
| 106 |
"""Gets the overall winning rate data for the given tools and calculates the winning percentage."""
|
| 107 |
overall_wins = (
|
|
|
|
| 133 |
)
|
| 134 |
|
| 135 |
|
| 136 |
+
def sort_key(date_str):
|
| 137 |
+
month, year_week = date_str.split("-")
|
| 138 |
+
month_order = [
|
| 139 |
+
"Jan",
|
| 140 |
+
"Feb",
|
| 141 |
+
"Mar",
|
| 142 |
+
"Apr",
|
| 143 |
+
"May",
|
| 144 |
+
"Jun",
|
| 145 |
+
"Jul",
|
| 146 |
+
"Aug",
|
| 147 |
+
"Sep",
|
| 148 |
+
"Oct",
|
| 149 |
+
"Nov",
|
| 150 |
+
"Dec",
|
| 151 |
+
]
|
| 152 |
+
month_num = month_order.index(month) + 1
|
| 153 |
+
week = int(year_week)
|
| 154 |
+
return (week // 100, month_num, week % 100) # year, month, week
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def integrated_plot_tool_winnings_overall_per_market_by_week(
|
| 158 |
+
winning_df: pd.DataFrame,
|
| 159 |
+
winning_selector: str = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
|
| 160 |
) -> gr.Plot:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
# get the column name from the metric name
|
| 163 |
+
column_name = tool_metric_choices.get(winning_selector)
|
| 164 |
+
|
| 165 |
+
wins_df = get_overall_winning_rate_by_market(winning_df)
|
| 166 |
+
# Sort the unique values of request_month_year_week
|
| 167 |
+
sorted_categories = sorted(
|
| 168 |
+
wins_df["request_month_year_week"].unique(), key=sort_key
|
| 169 |
)
|
| 170 |
+
# Create a categorical type with a specific order
|
| 171 |
+
wins_df["request_month_year_week"] = pd.Categorical(
|
| 172 |
+
wins_df["request_month_year_week"], categories=sorted_categories, ordered=True
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Sort the DataFrame based on the new categorical column
|
| 176 |
+
wins_df = wins_df.sort_values("request_month_year_week")
|
| 177 |
+
|
| 178 |
fig = px.bar(
|
| 179 |
+
wins_df,
|
| 180 |
x="request_month_year_week",
|
| 181 |
+
y=column_name,
|
| 182 |
color="market_creator",
|
| 183 |
barmode="group",
|
| 184 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
| 185 |
+
category_orders={
|
| 186 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
| 187 |
+
"request_month_year_week": sorted_categories,
|
| 188 |
+
},
|
| 189 |
)
|
| 190 |
fig.update_layout(
|
| 191 |
xaxis_title="Week",
|
| 192 |
+
yaxis_title=winning_selector,
|
| 193 |
legend=dict(yanchor="top", y=0.5),
|
| 194 |
)
|
| 195 |
fig.update_layout(width=WIDTH, height=HEIGHT)
|
| 196 |
fig.update_xaxes(tickformat="%b %d\n%Y")
|
| 197 |
+
return gr.Plot(value=fig)
|
|
|
|
|
|
|
| 198 |
|
| 199 |
|
| 200 |
def plot_tool_winnings_by_tool(wins_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
|
|
| 213 |
height=HEIGHT,
|
| 214 |
width=WIDTH,
|
| 215 |
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def integrated_tool_winnings_by_tool_per_market(
|
| 219 |
+
wins_df: pd.DataFrame, tool: str
|
| 220 |
+
) -> gr.Plot:
|
| 221 |
+
|
| 222 |
+
tool_wins_df = wins_df[wins_df["tool"] == tool]
|
| 223 |
+
# Sort the unique values of request_month_year_week
|
| 224 |
+
sorted_categories = sorted(
|
| 225 |
+
tool_wins_df["request_month_year_week"].unique(), key=sort_key
|
| 226 |
+
)
|
| 227 |
+
# Create a categorical type with a specific order
|
| 228 |
+
tool_wins_df["request_month_year_week"] = pd.Categorical(
|
| 229 |
+
tool_wins_df["request_month_year_week"],
|
| 230 |
+
categories=sorted_categories,
|
| 231 |
+
ordered=True,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Sort the DataFrame based on the new categorical column
|
| 235 |
+
wins_df = wins_df.sort_values("request_month_year_week")
|
| 236 |
+
fig = px.bar(
|
| 237 |
+
tool_wins_df,
|
| 238 |
+
x="request_month_year_week",
|
| 239 |
+
y="win_perc",
|
| 240 |
+
color="market_creator",
|
| 241 |
+
barmode="group",
|
| 242 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
| 243 |
+
category_orders={
|
| 244 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
| 245 |
+
"request_month_year_week": sorted_categories,
|
| 246 |
+
},
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
fig.update_layout(
|
| 250 |
+
xaxis_title="Week",
|
| 251 |
+
yaxis_title="Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
|
| 252 |
+
legend=dict(yanchor="top", y=0.5),
|
| 253 |
+
)
|
| 254 |
+
fig.update_layout(width=WIDTH, height=HEIGHT)
|
| 255 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
| 256 |
+
return gr.Plot(value=fig)
|
tabs/trades.py
CHANGED
|
@@ -91,40 +91,6 @@ def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
|
| 91 |
)
|
| 92 |
|
| 93 |
|
| 94 |
-
def plot_trades_per_market_by_week(
|
| 95 |
-
trades_df: pd.DataFrame, market_type: str
|
| 96 |
-
) -> gr.Plot:
|
| 97 |
-
"""Plots the trades data for the given tools and calculates the winning percentage."""
|
| 98 |
-
assert "market_creator" in trades_df.columns
|
| 99 |
-
# if market_type is "all then no filter is applied"
|
| 100 |
-
if market_type == "quickstart":
|
| 101 |
-
trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
|
| 102 |
-
color_sequence = ["goldenrod"]
|
| 103 |
-
|
| 104 |
-
elif market_type == "pearl":
|
| 105 |
-
trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
|
| 106 |
-
color_sequence = ["purple"]
|
| 107 |
-
else:
|
| 108 |
-
trades = trades_df
|
| 109 |
-
color_sequence = ["darkgreen"]
|
| 110 |
-
|
| 111 |
-
fig = px.bar(
|
| 112 |
-
trades,
|
| 113 |
-
x="month_year_week",
|
| 114 |
-
y="trades",
|
| 115 |
-
color_discrete_sequence=color_sequence,
|
| 116 |
-
title=market_type + " trades",
|
| 117 |
-
)
|
| 118 |
-
fig.update_layout(
|
| 119 |
-
xaxis_title="Week",
|
| 120 |
-
yaxis_title="Weekly nr of trades",
|
| 121 |
-
)
|
| 122 |
-
fig.update_xaxes(tickformat="%b %d\n%Y")
|
| 123 |
-
return gr.Plot(
|
| 124 |
-
value=fig,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:
|
| 129 |
|
| 130 |
# adding the total
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:
|
| 95 |
|
| 96 |
# adding the total
|