Spaces:
Restarting
Restarting
import pandas as pd | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from seaborn import FacetGrid | |
import plotly.express as px | |
import plotly.graph_objs as go | |
HEIGHT = 600 | |
WIDTH = 1000 | |
def plot_daily_invalid_trades_plotly(invalid_trades: pd.DataFrame): | |
fig = px.histogram(invalid_trades, x="creation_date") | |
return gr.Plot(value=fig) | |
def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame): | |
"""Function to paint the distribution of daily invalid trades, no matter which market""" | |
sns.set_theme(palette="viridis") | |
plt.figure(figsize=(25, 10)) | |
plot2 = sns.histplot(data=invalid_trades, x="creation_date", kde=True) | |
plt.xlabel("Creation date") | |
plt.ylabel("Daily number of invalid trades") | |
plt.xticks(rotation=45, ha="right") | |
daily_trades_fig = plot2.get_figure() | |
return gr.Plot(value=daily_trades_fig) | |
def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame): | |
"""Function to paint the number of invalid markets over time""" | |
daily_invalid_markets = ( | |
invalid_trades.groupby("creation_date") | |
.agg(trades_count=("title", "count"), nr_markets=("title", "nunique")) | |
.reset_index() | |
) | |
daily_invalid_markets["creation_date"] = daily_invalid_markets[ | |
"creation_date" | |
].astype(str) | |
daily_invalid_markets.columns = daily_invalid_markets.columns.astype(str) | |
return gr.LinePlot( | |
value=daily_invalid_markets, | |
x="creation_date", | |
y="nr_markets", | |
y_title="nr_markets", | |
interactive=True, | |
show_actions_button=True, | |
tooltip=["creation_date", "nr_markets", "trades_count"], | |
height=HEIGHT, | |
width=WIDTH, | |
) | |
def plotly_daily_nr_invalid_markets(invalid_trades: pd.DataFrame) -> gr.Plot: | |
daily_invalid_markets = ( | |
invalid_trades.groupby("creation_date") | |
.agg(trades_count=("title", "count"), nr_markets=("title", "nunique")) | |
.reset_index() | |
) | |
# Create the Plotly figure | |
fig = go.Figure() | |
# Add the line trace | |
fig.add_trace( | |
go.Scatter( | |
x=daily_invalid_markets["creation_date"], | |
y=daily_invalid_markets["nr_markets"], | |
mode="lines+markers", | |
name="Number of Markets", | |
hovertemplate="<b>Date:</b> %{x}<br>" | |
+ "<b>Number of Markets:</b> %{y}<br>" | |
+ "<b>Trades Count:</b> %{text}<br>", | |
text=daily_invalid_markets["trades_count"], # Used in the tooltip | |
) | |
) | |
# Customize the layout | |
fig.update_layout( | |
title="Daily Invalid Markets", | |
xaxis_title="Market Creation Date", | |
yaxis_title="Number of Markets", | |
xaxis=dict( | |
tickangle=-45, # Rotate x-axis labels by -45 degrees | |
tickfont=dict(size=10), # Adjust font size if needed | |
), | |
width=1000, # Adjusted for better fit on laptop screens | |
height=600, # Adjusted for better fit on laptop screens | |
hovermode="closest", # Improve tooltip behavior | |
# template="plotly_white", # Optional: set a cleaner background | |
) | |
return gr.Plot( | |
value=fig, | |
) | |
def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame): | |
"""Function to paint the number of invalid trades that the same market accummulates""" | |
cat = invalid_trades["title"] | |
codes, uniques = pd.factorize(cat) | |
# add the IDs as a new column to the original dataframe | |
invalid_trades["title_id"] = codes | |
plot: FacetGrid = sns.displot(invalid_trades, x="title_id") | |
plt.xlabel("market id") | |
plt.ylabel("Total number of invalid trades by market") | |
plt.title("Distribution of invalid trades per market") | |
return gr.Plot(value=plot.figure) | |
def plot_top_invalid_markets(invalid_trades: pd.DataFrame): | |
"""Function to paint the top markets with the highest number of invalid trades""" | |
top_invalid_markets: pd.DataFrame = ( | |
invalid_trades.title.value_counts().reset_index() | |
) | |
print(top_invalid_markets.head(5)) | |
top_invalid_markets = top_invalid_markets.head(5) | |
top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True) | |
return gr.DataFrame(top_invalid_markets) | |