File size: 5,973 Bytes
e2483e1 2273640 e2483e1 7a45667 e2483e1 7a45667 929ee61 7a45667 472bae0 7a45667 e2483e1 472bae0 7a45667 472bae0 7a45667 929ee61 7a45667 e2483e1 7a45667 e2483e1 7a45667 e2483e1 7a45667 929ee61 7a45667 e2483e1 929ee61 472bae0 e2483e1 7a45667 e2483e1 7a45667 472bae0 7a45667 472bae0 7a45667 2273640 472bae0 2273640 472bae0 929ee61 2273640 472bae0 2273640 e2483e1 7a45667 472bae0 7a45667 472bae0 2273640 472bae0 2273640 472bae0 929ee61 2273640 472bae0 2273640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import pandas as pd
import plotly.express as px
HEIGHT = 600
WIDTH = 1000
def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Prepares the trades data for analysis."""
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
"UTC"
)
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
trades_df["month_year"] = (
trades_df["creation_timestamp"].dt.to_period("M").astype(str)
)
trades_df["month_year_week"] = (
trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
return trades_df
def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall trades data"""
trades_count = trades_df.groupby("month_year_week").size().reset_index()
trades_count.columns = trades_count.columns.astype(str)
trades_count.rename(columns={"0": "trades"}, inplace=True)
return trades_count
def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall trades data"""
trades_count = (
trades_df.groupby(["month_year_week", "market_creator"], sort=False)
.size()
.reset_index()
)
trades_count.columns = trades_count.columns.astype(str)
trades_count.rename(columns={"0": "trades"}, inplace=True)
return trades_count
def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
winning_trades = (
trades_df.groupby(["month_year_week"])["winning_trade"].sum()
/ trades_df.groupby(["month_year_week"])["winning_trade"].count()
* 100
)
# winning_trades is a series, give it a dataframe
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = ["month_year_week", "winning_trade"]
return winning_trades
def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
winning_trades = (
trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
"winning_trade"
].sum()
/ trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
"winning_trade"
].count()
* 100
)
# winning_trades is a series, give it a dataframe
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
print(winning_trades.head())
return winning_trades
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
"""Plots the trades data for the given tools and calculates the winning percentage."""
return gr.BarPlot(
value=trades_df,
x="month_year_week",
y="trades",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "trades"],
height=HEIGHT,
width=WIDTH,
)
def plot_trades_per_market_by_week(
trades_df: pd.DataFrame, market_type: str
) -> gr.Plot:
"""Plots the trades data for the given tools and calculates the winning percentage."""
assert "market_creator" in trades_df.columns
# if market_type is "all then no filter is applied"
if market_type == "quickstart":
trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
color_sequence = ["goldenrod"]
elif market_type == "pearl":
trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
color_sequence = ["purple"]
else:
trades = trades_df
color_sequence = ["darkgreen"]
fig = px.bar(
trades,
x="month_year_week",
y="trades",
color_discrete_sequence=color_sequence,
title=market_type + " trades",
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly nr of trades",
# xaxis_type="category",
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
"""Plots the winning trades data for the given tools and calculates the winning percentage."""
return gr.BarPlot(
value=trades_df,
x="month_year_week",
y="winning_trade",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "winning_trade"],
height=HEIGHT,
width=WIDTH,
)
def plot_winning_trades_per_market_by_week(
trades_df: pd.DataFrame, market_type: str
) -> gr.Plot:
"""Plots the winning trades data for the given tools and calculates the winning percentage."""
# if market_type is "all then no filter is applied"
if market_type == "quickstart":
trades = trades_df.loc[trades_df["market_creator"] == "quickstart"]
color_sequence = ["goldenrod"]
elif market_type == "pearl":
trades = trades_df.loc[trades_df["market_creator"] == "pearl"]
color_sequence = ["purple"]
else:
trades = trades_df
color_sequence = ["darkgreen"]
fig = px.bar(
trades,
x="month_year_week",
y="winning_trade",
color_discrete_sequence=color_sequence,
title=market_type + " winning trades",
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly % of winning trades",
# xaxis_type="category",
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
|