Spaces:
Running
Running
File size: 4,361 Bytes
0af2865 897ce6f 0af2865 42c983e 62f6e0d 0af2865 e201b51 0af2865 897ce6f 0af2865 897ce6f 0af2865 897ce6f 62f6e0d 897ce6f 0af2865 897ce6f 0af2865 897ce6f 0af2865 897ce6f 0af2865 e201b51 0af2865 62f6e0d 42c983e 0af2865 897ce6f 62f6e0d 897ce6f 0af2865 897ce6f 0af2865 897ce6f 0af2865 897ce6f e9813d0 897ce6f e9813d0 0af2865 e9813d0 0af2865 e9813d0 897ce6f e9813d0 0af2865 e9813d0 0af2865 e9813d0 0af2865 e9813d0 0af2865 e9813d0 897ce6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub, LlamaCpp
from huggingface_hub import snapshot_download, hf_hub_download
from prompts import CONDENSE_QUESTION_PROMPT
repo_name = "IlyaGusev/saiga2_7b_gguf"
model_name = "model-q2_K.gguf"
snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(separator="\n",
chunk_size=500, #1000
chunk_overlap=30, #200
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
#embeddings = OpenAIEmbeddings()
#embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore, model_name):
llm = LlamaCpp(model_path=model_name,
temperature=0.1,
top_k=30,
top_p=0.9,
streaming=True,
n_ctx=2048,
n_parts=1,
echo=True
)
#llm = ChatOpenAI()
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm,
condense_question_prompt=CONDENSE_QUESTION_PROMPT
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
# main code
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore, model_name)
|