valencar commited on
Commit
d31725a
·
verified ·
1 Parent(s): 6569a28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -10
app.py CHANGED
@@ -9,17 +9,18 @@ question = "Qual é o maior planeta do sistema solar?"
9
 
10
  before = datetime.datetime.now()
11
 
12
- from transformers.modeling_outputs import Seq2SeqModelOutput, BaseModelOutput
13
 
14
- from transformers import AutoTokenizer, XGLMModel
15
- import torch
 
16
 
17
  prompt = "Question: Qual é o maior planeta do sistema solar ?"
18
- tokenizer = AutoTokenizer.from_pretrained("facebook/xglm-564M", use_fast=False)
19
- model = XGLMModel.from_pretrained("facebook/xglm-564M")
20
 
21
- inputs = tokenizer(prompt, return_tensors="pt")
22
- outputs = model(**inputs) #, labels=inputs["input_ids"])
 
 
23
 
24
 
25
  # last_hidden_states = outputs.last_hidden_state
@@ -32,8 +33,8 @@ outputs = model(**inputs) #, labels=inputs["input_ids"])
32
 
33
  # XGLMForCausalLM
34
 
35
- outputs = model(**inputs)
36
- output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
37
 
38
 
39
  # decoded = tokenizer.decode(output)
@@ -54,7 +55,7 @@ with st.container():
54
  st.write('\n\n')
55
  st.write('LLM-LANAChat\n\n')
56
  # st.write(outputs)
57
- st.write(output)
58
 
59
  print('\nsaida gerada.')
60
  print('\n\n')
 
9
 
10
  before = datetime.datetime.now()
11
 
12
+ # from transformers.modeling_outputs import Seq2SeqModelOutput, BaseModelOutput
13
 
14
+ from mlx_lm import load, generate
15
+
16
+ model, tokenizer = load("mlx-community/Meta-Llama-3.1-8B-Instruct-4bit")
17
 
18
  prompt = "Question: Qual é o maior planeta do sistema solar ?"
 
 
19
 
20
+ response = generate(model, tokenizer, prompt=prompt, verbose=True)
21
+
22
+ # inputs = tokenizer(prompt, return_tensors="pt")
23
+ # outputs = model(**inputs) #, labels=inputs["input_ids"])
24
 
25
 
26
  # last_hidden_states = outputs.last_hidden_state
 
33
 
34
  # XGLMForCausalLM
35
 
36
+ # outputs = model(**inputs)
37
+ # output = tokenizer.batch_decode(outputs, skip_special_tokens=True)
38
 
39
 
40
  # decoded = tokenizer.decode(output)
 
55
  st.write('\n\n')
56
  st.write('LLM-LANAChat\n\n')
57
  # st.write(outputs)
58
+ st.write(response)
59
 
60
  print('\nsaida gerada.')
61
  print('\n\n')