Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
!pip install --no-cache-dir transformers sentencepiece
|
| 4 |
+
|
| 5 |
+
import time
|
| 6 |
+
import datetime
|
| 7 |
+
|
| 8 |
+
import streamlit as st
|
| 9 |
+
|
| 10 |
+
question = "Name the planets in the solar system? A: "
|
| 11 |
+
question = "Quais são os planetas do sistema solar?"
|
| 12 |
+
question = "Qual é o maior planeta do sistema solar?"
|
| 13 |
+
|
| 14 |
+
before = datetime.datetime.now()
|
| 15 |
+
|
| 16 |
+
from transformers import AutoTokenizer, XGLMModel
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
prompt = "Question: Qual é o maior planeta do sistema solar ?"
|
| 20 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/xglm-564M", use_fast=False)
|
| 21 |
+
model = XGLMModel.from_pretrained("facebook/xglm-564M")
|
| 22 |
+
|
| 23 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 24 |
+
outputs = model(**inputs, labels=inputs["input_ids"])
|
| 25 |
+
|
| 26 |
+
last_hidden_states = outputs.last_hidden_state
|
| 27 |
+
|
| 28 |
+
output = last_hidden_states
|
| 29 |
+
|
| 30 |
+
output = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 31 |
+
|
| 32 |
+
with st.container():
|
| 33 |
+
st.write('\n\n')
|
| 34 |
+
st.write('LLM-LANAChat')
|
| 35 |
+
st.write('\n\n' + output)
|
| 36 |
+
|
| 37 |
+
print('saida gerada.')
|
| 38 |
+
print('\n\n')
|
| 39 |
+
|
| 40 |
+
after = datetime.datetime.now()
|
| 41 |
+
current_time = (after - before) # .strftime("%H:%M:%S")
|
| 42 |
+
print("\nTime Elapsed: ", current_time)
|
| 43 |
+
st.write("\nTime Elapsed: ", current_time)
|