chat-sabia / app.py
valencar's picture
Update app.py
945e950 verified
raw
history blame
1.24 kB
# from transformers import AutoModelForCausalLM, AutoTokenizer
pip install --no-cache-dir transformers sentencepiece
import time
import datetime
import streamlit as st
question = "Name the planets in the solar system? A: "
question = "Quais são os planetas do sistema solar?"
question = "Qual é o maior planeta do sistema solar?"
before = datetime.datetime.now()
from transformers import AutoTokenizer, XGLMModel
import torch
prompt = "Question: Qual é o maior planeta do sistema solar ?"
tokenizer = AutoTokenizer.from_pretrained("facebook/xglm-564M", use_fast=False)
model = XGLMModel.from_pretrained("facebook/xglm-564M")
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
last_hidden_states = outputs.last_hidden_state
output = last_hidden_states
output = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
with st.container():
st.write('\n\n')
st.write('LLM-LANAChat')
st.write('\n\n' + output)
print('saida gerada.')
print('\n\n')
after = datetime.datetime.now()
current_time = (after - before) # .strftime("%H:%M:%S")
print("\nTime Elapsed: ", current_time)
st.write("\nTime Elapsed: ", current_time)