File size: 3,682 Bytes
812fc43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e250bea
812fc43
 
 
0cd767f
812fc43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import datetime

import streamlit as st

question = "Name the planets in the solar system? A: "

question = "Quais são os planetas do sistema solar?" 

question = "Qual é o maior planeta do sistema solar?" 


before = datetime.datetime.now()

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("maritaca-ai/sabia-7b")
model = AutoModelForCausalLM.from_pretrained("maritaca-ai/sabia-7b")

prompt = "Question: Qual é o maior planeta do sistema solar ?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate    
generate_ids = model.generate(inputs.input_ids, max_length=100)
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

 
with st.container():
    st.write('\n\n')
    st.write('LLM-LANAChat')
    st.write('\n\n' + output)









# tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
# model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base")

# st.write('tokenizando...')
# inputs = tokenizer(question, return_tensors="tf")

# st.write('gerando a saida...')
# outputs = model(inputs)

# last_hidden_states = outputs.last_hidden_state

# output = last_hidden_states

# st.write(output)


# st.write('tokenizando...')
# prompt = "Qual é o maior planeta do sistema solar ?"
# # inputs = tokenizer(prompt, return_tensors="pt")

# # Generate

# st.write('gerando a saida...')
# # generate_ids = model.generate(inputs.input_ids, max_length=30)
# # output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]


# st.write('saída gerada')

# st.write(output)

# # Use a pipeline as a high-level helper
# # from transformers import pipeline

# # messages = [
# #     {"role": "user", "content": question},
# # ]

# print('gerando a saida...')

# st.write('gerando a saida...')

# pipe = pipeline("text-generation", model="01-ai/Yi-1.5-34B-Chat")

# st.write('pipeline...')

# output = pipe(messages)

# st.write('saída gerada...')

# st.write(output)



# print('tokenizando...')

# tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)

# print('tokenizado.')

# print('carregando o modelo...')
# # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM.
# model = AutoModelForCausalLM.from_pretrained(
#     model_path,
#     device_map="auto",
#     torch_dtype='auto'
# ).eval()
# print('modelo carreegado.')

# # Prompt content: "hi"
# messages = [
#     {"role": "user", "content": question}
# ]

# print('tokenizando o prompt...')
# input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors='pt')
# print('prompt tokenizado.')

# print('gerando a saida...')
# output_ids = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id,
#                                           max_new_tokens=10) #10 # 45
#                                        # max_new_tokens=22)
print('saida gerada.')

# print('Decodificando a saida...')
# response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# print('saida decodificada.')

# Model response: "Hello! How can I assist you today?"
# print(response)

# question = output['choices'][0]['text'].split('A:')[0]
# answer = output['choices'][0]['text'].split('A:')[1]
# answer = 'A: ' + answer

print('\n\n')
# print(question)
# print(response)

after = datetime.datetime.now()

current_time = (after - before) # .strftime("%H:%M:%S")
print("\nTime Elapsed: ", current_time)

st.write("\nTime Elapsed: ", current_time)