Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,150 +16,77 @@ def do_prediction(img):
|
|
16 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
17 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
|
|
|
|
24 |
width_mid = img_width_model - 2 * margin
|
25 |
height_mid = img_height_model - 2 * margin
|
26 |
-
|
27 |
img = img / float(255.0)
|
28 |
-
|
29 |
img_h = img.shape[0]
|
30 |
img_w = img.shape[1]
|
31 |
-
|
32 |
prediction_true = np.zeros((img_h, img_w, 3))
|
33 |
mask_true = np.zeros((img_h, img_w))
|
34 |
nxf = img_w / float(width_mid)
|
35 |
nyf = img_h / float(height_mid)
|
36 |
-
|
37 |
-
if
|
38 |
-
nxf = int(nxf) + 1
|
39 |
-
else:
|
40 |
-
nxf = int(nxf)
|
41 |
-
|
42 |
-
if nyf > int(nyf):
|
43 |
-
nyf = int(nyf) + 1
|
44 |
-
else:
|
45 |
-
nyf = int(nyf)
|
46 |
|
47 |
for i in range(nxf):
|
48 |
for j in range(nyf):
|
49 |
-
|
50 |
if i == 0:
|
51 |
index_x_d = i * width_mid
|
52 |
index_x_u = index_x_d + img_width_model
|
53 |
-
|
54 |
index_x_d = i * width_mid
|
55 |
index_x_u = index_x_d + img_width_model
|
56 |
-
|
57 |
if j == 0:
|
58 |
index_y_d = j * height_mid
|
59 |
index_y_u = index_y_d + img_height_model
|
60 |
-
|
61 |
index_y_d = j * height_mid
|
62 |
index_y_u = index_y_d + img_height_model
|
63 |
-
|
64 |
if index_x_u > img_w:
|
65 |
index_x_u = img_w
|
66 |
index_x_d = img_w - img_width_model
|
67 |
if index_y_u > img_h:
|
68 |
index_y_u = img_h
|
69 |
index_y_d = img_h - img_height_model
|
70 |
-
|
71 |
-
|
72 |
|
73 |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
74 |
-
|
75 |
-
|
76 |
-
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0)
|
77 |
-
|
78 |
seg = np.argmax(label_p_pred, axis=2)
|
79 |
-
|
80 |
-
|
81 |
-
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
82 |
-
|
83 |
-
if i==0 and j==0:
|
84 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
85 |
-
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
86 |
-
|
87 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
88 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
89 |
-
:] = seg_color
|
90 |
-
|
91 |
-
elif i==nxf-1 and j==nyf-1:
|
92 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
|
93 |
-
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
94 |
-
|
95 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
|
96 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
|
97 |
-
:] = seg_color
|
98 |
-
|
99 |
-
elif i==0 and j==nyf-1:
|
100 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
|
101 |
-
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
102 |
-
|
103 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
|
104 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
|
105 |
-
:] = seg_color
|
106 |
-
|
107 |
-
elif i==nxf-1 and j==0:
|
108 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
109 |
-
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
110 |
-
|
111 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
112 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
113 |
-
:] = seg_color
|
114 |
-
|
115 |
-
elif i==0 and j!=0 and j!=nyf-1:
|
116 |
-
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
117 |
-
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
118 |
-
|
119 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
120 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
121 |
-
:] = seg_color
|
122 |
-
|
123 |
-
elif i==nxf-1 and j!=0 and j!=nyf-1:
|
124 |
-
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
125 |
-
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
126 |
-
|
127 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
128 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
129 |
-
:] = seg_color
|
130 |
-
|
131 |
-
elif i!=0 and i!=nxf-1 and j==0:
|
132 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
133 |
-
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
134 |
-
|
135 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
136 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
137 |
-
:] = seg_color
|
138 |
-
|
139 |
-
elif i!=0 and i!=nxf-1 and j==nyf-1:
|
140 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
|
141 |
-
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
142 |
-
|
143 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
|
144 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
|
145 |
-
:] = seg_color
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
else:
|
148 |
-
|
149 |
-
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
150 |
-
|
151 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
152 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
153 |
-
:] = seg_color
|
154 |
|
155 |
prediction_true = prediction_true.astype(np.uint8)
|
156 |
|
157 |
-
y_predi=cv2.resize( y_predi, ( img.shape[1],img.shape[0]) ,interpolation=cv2.INTER_NEAREST)
|
158 |
-
#return y_predi
|
159 |
-
|
160 |
|
161 |
|
162 |
-
print(
|
163 |
|
164 |
|
165 |
|
@@ -175,7 +102,7 @@ def do_prediction(img):
|
|
175 |
print(prediction.shape)
|
176 |
|
177 |
'''
|
178 |
-
return
|
179 |
|
180 |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image())
|
181 |
iface.launch()
|
|
|
16 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
17 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
18 |
|
19 |
+
if img.shape[0] < img_height_model:
|
20 |
+
img = resize_image(img, img_height_model, img.shape[1])
|
21 |
|
22 |
+
if img.shape[1] < img_width_model:
|
23 |
+
img = resize_image(img, img.shape[0], img_width_model)
|
24 |
|
25 |
+
marginal_of_patch_percent = 0.1
|
26 |
+
margin = int(marginal_of_patch_percent * img_height_model)
|
27 |
width_mid = img_width_model - 2 * margin
|
28 |
height_mid = img_height_model - 2 * margin
|
|
|
29 |
img = img / float(255.0)
|
30 |
+
img = img.astype(np.float16)
|
31 |
img_h = img.shape[0]
|
32 |
img_w = img.shape[1]
|
|
|
33 |
prediction_true = np.zeros((img_h, img_w, 3))
|
34 |
mask_true = np.zeros((img_h, img_w))
|
35 |
nxf = img_w / float(width_mid)
|
36 |
nyf = img_h / float(height_mid)
|
37 |
+
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
|
38 |
+
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
for i in range(nxf):
|
41 |
for j in range(nyf):
|
|
|
42 |
if i == 0:
|
43 |
index_x_d = i * width_mid
|
44 |
index_x_u = index_x_d + img_width_model
|
45 |
+
else:
|
46 |
index_x_d = i * width_mid
|
47 |
index_x_u = index_x_d + img_width_model
|
|
|
48 |
if j == 0:
|
49 |
index_y_d = j * height_mid
|
50 |
index_y_u = index_y_d + img_height_model
|
51 |
+
else:
|
52 |
index_y_d = j * height_mid
|
53 |
index_y_u = index_y_d + img_height_model
|
|
|
54 |
if index_x_u > img_w:
|
55 |
index_x_u = img_w
|
56 |
index_x_d = img_w - img_width_model
|
57 |
if index_y_u > img_h:
|
58 |
index_y_u = img_h
|
59 |
index_y_d = img_h - img_height_model
|
|
|
|
|
60 |
|
61 |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
62 |
+
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
|
63 |
+
verbose=0)
|
|
|
|
|
64 |
seg = np.argmax(label_p_pred, axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
if i == 0 and j == 0:
|
67 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
68 |
+
elif i == nxf - 1 and j == nyf - 1:
|
69 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
|
70 |
+
elif i == 0 and j == nyf - 1:
|
71 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
72 |
+
elif i == nxf - 1 and j == 0:
|
73 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
74 |
+
elif i == 0 and j != 0 and j != nyf - 1:
|
75 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
76 |
+
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
77 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
78 |
+
elif i != 0 and i != nxf - 1 and j == 0:
|
79 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
80 |
+
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
81 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
|
82 |
else:
|
83 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
prediction_true = prediction_true.astype(np.uint8)
|
86 |
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
+
print(prediction_true.shape, np.unique(prediction_true))
|
90 |
|
91 |
|
92 |
|
|
|
102 |
print(prediction.shape)
|
103 |
|
104 |
'''
|
105 |
+
return prediction_true
|
106 |
|
107 |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image())
|
108 |
iface.launch()
|