Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,150 +16,77 @@ def do_prediction(img):
|
|
| 16 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
| 17 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
| 18 |
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
|
|
|
|
|
|
| 24 |
width_mid = img_width_model - 2 * margin
|
| 25 |
height_mid = img_height_model - 2 * margin
|
| 26 |
-
|
| 27 |
img = img / float(255.0)
|
| 28 |
-
|
| 29 |
img_h = img.shape[0]
|
| 30 |
img_w = img.shape[1]
|
| 31 |
-
|
| 32 |
prediction_true = np.zeros((img_h, img_w, 3))
|
| 33 |
mask_true = np.zeros((img_h, img_w))
|
| 34 |
nxf = img_w / float(width_mid)
|
| 35 |
nyf = img_h / float(height_mid)
|
| 36 |
-
|
| 37 |
-
if
|
| 38 |
-
nxf = int(nxf) + 1
|
| 39 |
-
else:
|
| 40 |
-
nxf = int(nxf)
|
| 41 |
-
|
| 42 |
-
if nyf > int(nyf):
|
| 43 |
-
nyf = int(nyf) + 1
|
| 44 |
-
else:
|
| 45 |
-
nyf = int(nyf)
|
| 46 |
|
| 47 |
for i in range(nxf):
|
| 48 |
for j in range(nyf):
|
| 49 |
-
|
| 50 |
if i == 0:
|
| 51 |
index_x_d = i * width_mid
|
| 52 |
index_x_u = index_x_d + img_width_model
|
| 53 |
-
|
| 54 |
index_x_d = i * width_mid
|
| 55 |
index_x_u = index_x_d + img_width_model
|
| 56 |
-
|
| 57 |
if j == 0:
|
| 58 |
index_y_d = j * height_mid
|
| 59 |
index_y_u = index_y_d + img_height_model
|
| 60 |
-
|
| 61 |
index_y_d = j * height_mid
|
| 62 |
index_y_u = index_y_d + img_height_model
|
| 63 |
-
|
| 64 |
if index_x_u > img_w:
|
| 65 |
index_x_u = img_w
|
| 66 |
index_x_d = img_w - img_width_model
|
| 67 |
if index_y_u > img_h:
|
| 68 |
index_y_u = img_h
|
| 69 |
index_y_d = img_h - img_height_model
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0)
|
| 77 |
-
|
| 78 |
seg = np.argmax(label_p_pred, axis=2)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
| 82 |
-
|
| 83 |
-
if i==0 and j==0:
|
| 84 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
| 85 |
-
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
| 86 |
-
|
| 87 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
| 88 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
| 89 |
-
:] = seg_color
|
| 90 |
-
|
| 91 |
-
elif i==nxf-1 and j==nyf-1:
|
| 92 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
|
| 93 |
-
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
| 94 |
-
|
| 95 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
|
| 96 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
|
| 97 |
-
:] = seg_color
|
| 98 |
-
|
| 99 |
-
elif i==0 and j==nyf-1:
|
| 100 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
|
| 101 |
-
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
| 102 |
-
|
| 103 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
|
| 104 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
|
| 105 |
-
:] = seg_color
|
| 106 |
-
|
| 107 |
-
elif i==nxf-1 and j==0:
|
| 108 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
| 109 |
-
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
| 110 |
-
|
| 111 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
| 112 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
| 113 |
-
:] = seg_color
|
| 114 |
-
|
| 115 |
-
elif i==0 and j!=0 and j!=nyf-1:
|
| 116 |
-
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
| 117 |
-
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
| 118 |
-
|
| 119 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
| 120 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
| 121 |
-
:] = seg_color
|
| 122 |
-
|
| 123 |
-
elif i==nxf-1 and j!=0 and j!=nyf-1:
|
| 124 |
-
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
| 125 |
-
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
| 126 |
-
|
| 127 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
| 128 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
| 129 |
-
:] = seg_color
|
| 130 |
-
|
| 131 |
-
elif i!=0 and i!=nxf-1 and j==0:
|
| 132 |
-
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
| 133 |
-
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
| 134 |
-
|
| 135 |
-
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
| 136 |
-
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
| 137 |
-
:] = seg_color
|
| 138 |
-
|
| 139 |
-
elif i!=0 and i!=nxf-1 and j==nyf-1:
|
| 140 |
-
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
|
| 141 |
-
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
| 142 |
-
|
| 143 |
-
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
|
| 144 |
-
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
|
| 145 |
-
:] = seg_color
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
else:
|
| 148 |
-
|
| 149 |
-
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
| 150 |
-
|
| 151 |
-
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
| 152 |
-
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
| 153 |
-
:] = seg_color
|
| 154 |
|
| 155 |
prediction_true = prediction_true.astype(np.uint8)
|
| 156 |
|
| 157 |
-
y_predi=cv2.resize( y_predi, ( img.shape[1],img.shape[0]) ,interpolation=cv2.INTER_NEAREST)
|
| 158 |
-
#return y_predi
|
| 159 |
-
|
| 160 |
|
| 161 |
|
| 162 |
-
print(
|
| 163 |
|
| 164 |
|
| 165 |
|
|
@@ -175,7 +102,7 @@ def do_prediction(img):
|
|
| 175 |
print(prediction.shape)
|
| 176 |
|
| 177 |
'''
|
| 178 |
-
return
|
| 179 |
|
| 180 |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image())
|
| 181 |
iface.launch()
|
|
|
|
| 16 |
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
| 17 |
n_classes=model.layers[len(model.layers)-1].output_shape[3]
|
| 18 |
|
| 19 |
+
if img.shape[0] < img_height_model:
|
| 20 |
+
img = resize_image(img, img_height_model, img.shape[1])
|
| 21 |
|
| 22 |
+
if img.shape[1] < img_width_model:
|
| 23 |
+
img = resize_image(img, img.shape[0], img_width_model)
|
| 24 |
|
| 25 |
+
marginal_of_patch_percent = 0.1
|
| 26 |
+
margin = int(marginal_of_patch_percent * img_height_model)
|
| 27 |
width_mid = img_width_model - 2 * margin
|
| 28 |
height_mid = img_height_model - 2 * margin
|
|
|
|
| 29 |
img = img / float(255.0)
|
| 30 |
+
img = img.astype(np.float16)
|
| 31 |
img_h = img.shape[0]
|
| 32 |
img_w = img.shape[1]
|
|
|
|
| 33 |
prediction_true = np.zeros((img_h, img_w, 3))
|
| 34 |
mask_true = np.zeros((img_h, img_w))
|
| 35 |
nxf = img_w / float(width_mid)
|
| 36 |
nyf = img_h / float(height_mid)
|
| 37 |
+
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
|
| 38 |
+
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
for i in range(nxf):
|
| 41 |
for j in range(nyf):
|
|
|
|
| 42 |
if i == 0:
|
| 43 |
index_x_d = i * width_mid
|
| 44 |
index_x_u = index_x_d + img_width_model
|
| 45 |
+
else:
|
| 46 |
index_x_d = i * width_mid
|
| 47 |
index_x_u = index_x_d + img_width_model
|
|
|
|
| 48 |
if j == 0:
|
| 49 |
index_y_d = j * height_mid
|
| 50 |
index_y_u = index_y_d + img_height_model
|
| 51 |
+
else:
|
| 52 |
index_y_d = j * height_mid
|
| 53 |
index_y_u = index_y_d + img_height_model
|
|
|
|
| 54 |
if index_x_u > img_w:
|
| 55 |
index_x_u = img_w
|
| 56 |
index_x_d = img_w - img_width_model
|
| 57 |
if index_y_u > img_h:
|
| 58 |
index_y_u = img_h
|
| 59 |
index_y_d = img_h - img_height_model
|
|
|
|
|
|
|
| 60 |
|
| 61 |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
| 62 |
+
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
|
| 63 |
+
verbose=0)
|
|
|
|
|
|
|
| 64 |
seg = np.argmax(label_p_pred, axis=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
if i == 0 and j == 0:
|
| 67 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 68 |
+
elif i == nxf - 1 and j == nyf - 1:
|
| 69 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 70 |
+
elif i == 0 and j == nyf - 1:
|
| 71 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 72 |
+
elif i == nxf - 1 and j == 0:
|
| 73 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 74 |
+
elif i == 0 and j != 0 and j != nyf - 1:
|
| 75 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 76 |
+
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
| 77 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 78 |
+
elif i != 0 and i != nxf - 1 and j == 0:
|
| 79 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 80 |
+
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
| 81 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 82 |
else:
|
| 83 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
prediction_true = prediction_true.astype(np.uint8)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
+
print(prediction_true.shape, np.unique(prediction_true))
|
| 90 |
|
| 91 |
|
| 92 |
|
|
|
|
| 102 |
print(prediction.shape)
|
| 103 |
|
| 104 |
'''
|
| 105 |
+
return prediction_true
|
| 106 |
|
| 107 |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image())
|
| 108 |
iface.launch()
|