Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
from huggingface_hub import from_pretrained_keras | |
def resize_image(img_in,input_height,input_width): | |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST) | |
def do_prediction(img): | |
model = from_pretrained_keras("vahidrezanezhad/sbb_binarization") | |
img_height_model=model.layers[len(model.layers)-1].output_shape[1] | |
img_width_model=model.layers[len(model.layers)-1].output_shape[2] | |
n_classes=model.layers[len(model.layers)-1].output_shape[3] | |
if img.shape[0] < img_height_model: | |
img = resize_image(img, img_height_model, img.shape[1]) | |
if img.shape[1] < img_width_model: | |
img = resize_image(img, img.shape[0], img_width_model) | |
marginal_of_patch_percent = 0.1 | |
margin = int(marginal_of_patch_percent * img_height_model) | |
width_mid = img_width_model - 2 * margin | |
height_mid = img_height_model - 2 * margin | |
img = img / float(255.0) | |
img = img.astype(np.float16) | |
img_h = img.shape[0] | |
img_w = img.shape[1] | |
prediction_true = np.zeros((img_h, img_w, 3)) | |
mask_true = np.zeros((img_h, img_w)) | |
nxf = img_w / float(width_mid) | |
nyf = img_h / float(height_mid) | |
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf) | |
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf) | |
for i in range(nxf): | |
for j in range(nyf): | |
if i == 0: | |
index_x_d = i * width_mid | |
index_x_u = index_x_d + img_width_model | |
else: | |
index_x_d = i * width_mid | |
index_x_u = index_x_d + img_width_model | |
if j == 0: | |
index_y_d = j * height_mid | |
index_y_u = index_y_d + img_height_model | |
else: | |
index_y_d = j * height_mid | |
index_y_u = index_y_d + img_height_model | |
if index_x_u > img_w: | |
index_x_u = img_w | |
index_x_d = img_w - img_width_model | |
if index_y_u > img_h: | |
index_y_u = img_h | |
index_y_d = img_h - img_height_model | |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | |
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), | |
verbose=0) | |
seg = np.argmax(label_p_pred, axis=3)[0] | |
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | |
if i == 0 and j == 0: | |
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | |
#seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | |
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | |
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | |
elif i == nxf - 1 and j == nyf - 1: | |
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] | |
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] | |
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg | |
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color | |
elif i == 0 and j == nyf - 1: | |
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] | |
#seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] | |
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg | |
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color | |
elif i == nxf - 1 and j == 0: | |
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | |
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] | |
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | |
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | |
elif i == 0 and j != 0 and j != nyf - 1: | |
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] | |
#seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] | |
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg | |
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color | |
elif i == nxf - 1 and j != 0 and j != nyf - 1: | |
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] | |
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] | |
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg | |
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color | |
elif i != 0 and i != nxf - 1 and j == 0: | |
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | |
#seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] | |
#mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | |
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | |
elif i != 0 and i != nxf - 1 and j == nyf - 1: | |
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] | |
#seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] | |
#mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg | |
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color | |
else: | |
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] | |
#seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] | |
#mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg | |
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | |
prediction_true = prediction_true.astype(np.uint8) | |
''' | |
img = img / float(255.0) | |
image = resize_image(image, 224,448) | |
prediction = model.predict(image.reshape(1,224,448,image.shape[2])) | |
prediction = tf.squeeze(tf.round(prediction)) | |
prediction = np.argmax(prediction,axis=2) | |
prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2) | |
print(prediction.shape) | |
''' | |
prediction_true = prediction_true * -1 | |
prediction_true = prediction_true + 1 | |
return prediction_true * 255 | |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image()) | |
iface.launch() | |