Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
from huggingface_hub import from_pretrained_keras | |
def resize_image(img_in,input_height,input_width): | |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST) | |
def do_prediction(img): | |
model = from_pretrained_keras("vahidrezanezhad/sbb_binarization") | |
img_height_model=model.layers[len(model.layers)-1].output_shape[1] | |
img_width_model=model.layers[len(model.layers)-1].output_shape[2] | |
n_classes=model.layers[len(model.layers)-1].output_shape[3] | |
prnt(img_height_model, img_width_model, n_classes,'didi') | |
kernel = np.ones((5,5),np.uint8) | |
margin = int(0.1 * img_width_model) | |
width_mid = img_width_model - 2 * margin | |
height_mid = img_height_model - 2 * margin | |
img = img / float(255.0) | |
img_h = img.shape[0] | |
img_w = img.shape[1] | |
prediction_true = np.zeros((img_h, img_w, 3)) | |
mask_true = np.zeros((img_h, img_w)) | |
nxf = img_w / float(width_mid) | |
nyf = img_h / float(height_mid) | |
if nxf > int(nxf): | |
nxf = int(nxf) + 1 | |
else: | |
nxf = int(nxf) | |
if nyf > int(nyf): | |
nyf = int(nyf) + 1 | |
else: | |
nyf = int(nyf) | |
for i in range(nxf): | |
for j in range(nyf): | |
if i == 0: | |
index_x_d = i * width_mid | |
index_x_u = index_x_d + img_width_model | |
elif i > 0: | |
index_x_d = i * width_mid | |
index_x_u = index_x_d + img_width_model | |
if j == 0: | |
index_y_d = j * height_mid | |
index_y_u = index_y_d + img_height_model | |
elif j > 0: | |
index_y_d = j * height_mid | |
index_y_u = index_y_d + img_height_model | |
if index_x_u > img_w: | |
index_x_u = img_w | |
index_x_d = img_w - img_width_model | |
if index_y_u > img_h: | |
index_y_u = img_h | |
index_y_d = img_h - img_height_model | |
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] | |
label_p_pred = model.predict( | |
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0) | |
seg = np.argmax(label_p_pred, axis=2) | |
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) | |
if i==0 and j==0: | |
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | |
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin] | |
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | |
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin, | |
:] = seg_color | |
elif i==nxf-1 and j==nyf-1: | |
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :] | |
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0] | |
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg | |
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0, | |
:] = seg_color | |
elif i==0 and j==nyf-1: | |
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :] | |
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin] | |
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg | |
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin, | |
:] = seg_color | |
elif i==nxf-1 and j==0: | |
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | |
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0] | |
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | |
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0, | |
:] = seg_color | |
elif i==0 and j!=0 and j!=nyf-1: | |
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :] | |
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin] | |
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg | |
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin, | |
:] = seg_color | |
elif i==nxf-1 and j!=0 and j!=nyf-1: | |
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :] | |
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0] | |
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg | |
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0, | |
:] = seg_color | |
elif i!=0 and i!=nxf-1 and j==0: | |
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | |
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin] | |
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | |
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin, | |
:] = seg_color | |
elif i!=0 and i!=nxf-1 and j==nyf-1: | |
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :] | |
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin] | |
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg | |
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin, | |
:] = seg_color | |
else: | |
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :] | |
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin] | |
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg | |
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin, | |
:] = seg_color | |
prediction_true = prediction_true.astype(np.uint8) | |
y_predi=cv2.resize( y_predi, ( img.shape[1],img.shape[0]) ,interpolation=cv2.INTER_NEAREST) | |
#return y_predi | |
print(y_predi.shape, np.unique(y_predi)) | |
''' | |
img = img / float(255.0) | |
image = resize_image(image, 224,448) | |
prediction = model.predict(image.reshape(1,224,448,image.shape[2])) | |
prediction = tf.squeeze(tf.round(prediction)) | |
prediction = np.argmax(prediction,axis=2) | |
prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2) | |
print(prediction.shape) | |
''' | |
return y_predi | |
iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image()) | |
iface.launch() | |