File size: 7,437 Bytes
525f3dd
e3cece8
40fa99d
a75241a
cffbee3
 
e3cece8
a75241a
 
5b0a672
525f3dd
c513c64
ed88d55
097c58a
 
 
 
 
e337e1f
9a3ade1
097c58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a75241a
7854bc4
ed88d55
525f3dd
67022df
 
0f3e703
ed88d55
 
097c58a
 
ed88d55
097c58a
525f3dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import tensorflow as tf
import numpy as np
import cv2
from huggingface_hub import from_pretrained_keras


def resize_image(img_in,input_height,input_width):
    return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)


def do_prediction(img):
    model = from_pretrained_keras("vahidrezanezhad/sbb_binarization")

    img_height_model=model.layers[len(model.layers)-1].output_shape[1]
    img_width_model=model.layers[len(model.layers)-1].output_shape[2]
    n_classes=model.layers[len(model.layers)-1].output_shape[3]

    print(img_height_model, img_width_model, n_classes,'didi')

    kernel = np.ones((5,5),np.uint8)
    margin = int(0.1 * img_width_model)

    width_mid = img_width_model - 2 * margin
    height_mid = img_height_model - 2 * margin

    img = img / float(255.0)

    img_h = img.shape[0]
    img_w = img.shape[1]

    prediction_true = np.zeros((img_h, img_w, 3))
    mask_true = np.zeros((img_h, img_w))
    nxf = img_w / float(width_mid)
    nyf = img_h / float(height_mid)

    if nxf > int(nxf):
        nxf = int(nxf) + 1
    else:
        nxf = int(nxf)

    if nyf > int(nyf):
        nyf = int(nyf) + 1
    else:
        nyf = int(nyf)

    for i in range(nxf):
        for j in range(nyf):

            if i == 0:
                index_x_d = i * width_mid
                index_x_u = index_x_d + img_width_model
            elif i > 0:
                index_x_d = i * width_mid
                index_x_u = index_x_d + img_width_model

            if j == 0:
                index_y_d = j * height_mid
                index_y_u = index_y_d + img_height_model
            elif j > 0:
                index_y_d = j * height_mid
                index_y_u = index_y_d + img_height_model

            if index_x_u > img_w:
                index_x_u = img_w
                index_x_d = img_w - img_width_model
            if index_y_u > img_h:
                index_y_u = img_h
                index_y_d = img_h - img_height_model
                
            

            img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]

            label_p_pred = model.predict(
                img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]), verbose=0)

            seg = np.argmax(label_p_pred, axis=2)
            

            seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)

            if i==0 and j==0:
                seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
                seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]

                mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
                prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
                :] = seg_color
                
            elif i==nxf-1 and j==nyf-1:
                seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
                seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]

                mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
                prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
                :] = seg_color
                
            elif i==0 and j==nyf-1:
                seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
                seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]

                mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
                prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
                :] = seg_color
                
            elif i==nxf-1 and j==0:
                seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
                seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]

                mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
                prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
                :] = seg_color
                
            elif i==0 and j!=0 and j!=nyf-1:
                seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
                seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]

                mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
                prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
                :] = seg_color
                
            elif i==nxf-1 and j!=0 and j!=nyf-1:
                seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
                seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]

                mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
                prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
                :] = seg_color
                
            elif i!=0 and i!=nxf-1 and j==0:
                seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
                seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]

                mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
                prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
                :] = seg_color
                
            elif i!=0 and i!=nxf-1 and j==nyf-1:
                seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
                seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]

                mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
                prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
                :] = seg_color

            else:
                seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
                seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]

                mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
                prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
                :] = seg_color

    prediction_true = prediction_true.astype(np.uint8)

    y_predi=cv2.resize( y_predi, ( img.shape[1],img.shape[0]) ,interpolation=cv2.INTER_NEAREST)
    #return y_predi
            
            
            
    print(y_predi.shape, np.unique(y_predi))  
                


    '''
    img = img / float(255.0)
    image = resize_image(image, 224,448)
    prediction = model.predict(image.reshape(1,224,448,image.shape[2]))
    prediction = tf.squeeze(tf.round(prediction))

    prediction = np.argmax(prediction,axis=2)

    prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2)
    print(prediction.shape)
    
    '''
    return y_predi

iface = gr.Interface(fn=do_prediction, inputs=gr.Image(), outputs=gr.Image())
iface.launch()