File size: 1,936 Bytes
6a39bcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from torch import nn
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
from PIL import Image
import matplotlib.pyplot as plt
import requests
import gradio as gr
import numpy as np

# convenience expression for automatically determining device
device = (
    "cuda"
    # Device for NVIDIA or AMD GPUs
    if torch.cuda.is_available()
    else "mps"
    # Device for Apple Silicon (Metal Performance Shaders)
    if torch.backends.mps.is_available()
    else "cpu"
)

# Load models
image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
model.to(device)

# Inference function
def infer(image: Image.Image) -> np.ndarray:
    # Preprocess image
    inputs = image_processor(images=image, return_tensors="pt").to(device)
    outputs = model(**inputs)
    logits = outputs.logits  # shape (batch_size, num_labels, ~height/4, ~width/4)

    # Resize output to match input image dimensions
    upsampled_logits = nn.functional.interpolate(logits,
                size=image.size[::-1],  # H x W
                mode='bilinear',
                align_corners=False)

    # Get label masks
    labels = upsampled_logits.argmax(dim=1)[0]

    # Move to CPU to visualize in matplotlib
    labels_viz = labels.cpu().numpy()
    return labels_viz

# Create Gradio interface
iface = gr.Interface(
    fn=infer,  # the function to be used for inference
    inputs=gr.inputs.Image(type="pil"),  # input type (image)
    outputs=gr.outputs.Image(type="numpy"),  # output type (image as numpy array)
    live=True,  # run inference live as the image is uploaded
    title="Face Parsing with Segformer",  # interface title
    description="Upload an image to perform face parsing using the Segformer model for semantic segmentation."  # description
)

# Launch the interface
iface.launch()