Spaces:
Sleeping
Sleeping
Delete fish_speech
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- fish_speech/__pycache__/conversation.cpython-310.pyc +0 -0
- fish_speech/__pycache__/scheduler.cpython-310.pyc +0 -0
- fish_speech/callbacks/__init__.py +0 -3
- fish_speech/callbacks/__pycache__/__init__.cpython-310.pyc +0 -0
- fish_speech/callbacks/__pycache__/grad_norm.cpython-310.pyc +0 -0
- fish_speech/callbacks/grad_norm.py +0 -113
- fish_speech/configs/base.yaml +0 -87
- fish_speech/configs/firefly_gan_vq.yaml +0 -33
- fish_speech/configs/lora/r_8_alpha_16.yaml +0 -4
- fish_speech/configs/text2semantic_finetune.yaml +0 -83
- fish_speech/conversation.py +0 -2
- fish_speech/datasets/__pycache__/semantic.cpython-310.pyc +0 -0
- fish_speech/datasets/concat_repeat.py +0 -53
- fish_speech/datasets/protos/__pycache__/text_data_pb2.cpython-310.pyc +0 -0
- fish_speech/datasets/protos/__pycache__/text_data_stream.cpython-310.pyc +0 -0
- fish_speech/datasets/protos/text-data.proto +0 -24
- fish_speech/datasets/protos/text_data_pb2.py +0 -33
- fish_speech/datasets/protos/text_data_stream.py +0 -36
- fish_speech/datasets/semantic.py +0 -496
- fish_speech/datasets/vqgan.py +0 -147
- fish_speech/i18n/README.md +0 -27
- fish_speech/i18n/__init__.py +0 -3
- fish_speech/i18n/__pycache__/__init__.cpython-310.pyc +0 -0
- fish_speech/i18n/__pycache__/core.cpython-310.pyc +0 -0
- fish_speech/i18n/core.py +0 -40
- fish_speech/i18n/locale/en_US.json +0 -122
- fish_speech/i18n/locale/es_ES.json +0 -122
- fish_speech/i18n/locale/ja_JP.json +0 -123
- fish_speech/i18n/locale/pt_BR.json +0 -133
- fish_speech/i18n/locale/zh_CN.json +0 -122
- fish_speech/i18n/scan.py +0 -122
- fish_speech/models/text2semantic/__init__.py +0 -0
- fish_speech/models/text2semantic/__pycache__/__init__.cpython-310.pyc +0 -0
- fish_speech/models/text2semantic/__pycache__/lit_module.cpython-310.pyc +0 -0
- fish_speech/models/text2semantic/__pycache__/llama.cpython-310.pyc +0 -0
- fish_speech/models/text2semantic/__pycache__/lora.cpython-310.pyc +0 -0
- fish_speech/models/text2semantic/lit_module.py +0 -202
- fish_speech/models/text2semantic/llama.py +0 -779
- fish_speech/models/text2semantic/lora.py +0 -92
- fish_speech/models/vqgan/__init__.py +0 -0
- fish_speech/models/vqgan/__pycache__/__init__.cpython-310.pyc +0 -0
- fish_speech/models/vqgan/modules/__pycache__/firefly.cpython-310.pyc +0 -0
- fish_speech/models/vqgan/modules/__pycache__/fsq.cpython-310.pyc +0 -0
- fish_speech/models/vqgan/modules/firefly.py +0 -596
- fish_speech/models/vqgan/modules/fsq.py +0 -116
- fish_speech/models/vqgan/utils.py +0 -94
- fish_speech/scheduler.py +0 -40
- fish_speech/text/__init__.py +0 -4
- fish_speech/text/__pycache__/__init__.cpython-310.pyc +0 -0
- fish_speech/text/__pycache__/clean.cpython-310.pyc +0 -0
fish_speech/__pycache__/conversation.cpython-310.pyc
DELETED
Binary file (227 Bytes)
|
|
fish_speech/__pycache__/scheduler.cpython-310.pyc
DELETED
Binary file (1.04 kB)
|
|
fish_speech/callbacks/__init__.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
from .grad_norm import GradNormMonitor
|
2 |
-
|
3 |
-
__all__ = ["GradNormMonitor"]
|
|
|
|
|
|
|
|
fish_speech/callbacks/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (239 Bytes)
|
|
fish_speech/callbacks/__pycache__/grad_norm.cpython-310.pyc
DELETED
Binary file (3.79 kB)
|
|
fish_speech/callbacks/grad_norm.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
from typing import Optional, Union
|
2 |
-
|
3 |
-
import lightning.pytorch as pl
|
4 |
-
import torch
|
5 |
-
from lightning import LightningModule, Trainer
|
6 |
-
from lightning.pytorch.callbacks import Callback
|
7 |
-
from torch import Tensor, nn
|
8 |
-
from torch.utils._foreach_utils import (
|
9 |
-
_group_tensors_by_device_and_dtype,
|
10 |
-
_has_foreach_support,
|
11 |
-
)
|
12 |
-
|
13 |
-
|
14 |
-
@torch.no_grad()
|
15 |
-
def grad_norm(
|
16 |
-
parameters: Union[Tensor, list[Tensor]],
|
17 |
-
norm_type: float = 2.0,
|
18 |
-
) -> float:
|
19 |
-
"""
|
20 |
-
Returns the norm of the gradients of the given parameters.
|
21 |
-
|
22 |
-
Args:
|
23 |
-
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
|
24 |
-
single Tensor that will have gradients normalized
|
25 |
-
norm_type (float): type of the used p-norm.
|
26 |
-
|
27 |
-
Returns:
|
28 |
-
Total norm of the parameter gradients (viewed as a single vector).
|
29 |
-
""" # noqa: E501
|
30 |
-
|
31 |
-
if isinstance(parameters, Tensor):
|
32 |
-
parameters = [parameters]
|
33 |
-
|
34 |
-
grads = [p.grad for p in parameters if p.grad is not None]
|
35 |
-
if len(grads) == 0:
|
36 |
-
return None
|
37 |
-
|
38 |
-
first_device = grads[0].device
|
39 |
-
grouped_grads: dict[
|
40 |
-
tuple[torch.device, torch.dtype], list[list[Tensor]]
|
41 |
-
] = _group_tensors_by_device_and_dtype(
|
42 |
-
[[g.detach() for g in grads]]
|
43 |
-
) # type: ignore[assignment]
|
44 |
-
|
45 |
-
norms = []
|
46 |
-
for (device, _), ([grads], _) in grouped_grads.items():
|
47 |
-
if _has_foreach_support(grads, device=device):
|
48 |
-
norms.extend(torch._foreach_norm(grads, norm_type))
|
49 |
-
else:
|
50 |
-
norms.extend([torch.norm(g, norm_type) for g in grads])
|
51 |
-
|
52 |
-
return torch.norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type)
|
53 |
-
|
54 |
-
|
55 |
-
class GradNormMonitor(Callback):
|
56 |
-
"""
|
57 |
-
Callback that computes the gradient norm of the model parameters.
|
58 |
-
"""
|
59 |
-
|
60 |
-
def __init__(
|
61 |
-
self,
|
62 |
-
norm_type: float = 2.0,
|
63 |
-
logging_interval: str = "step",
|
64 |
-
sub_module: Optional[Union[str, list[str]]] = None,
|
65 |
-
) -> None:
|
66 |
-
"""
|
67 |
-
Args:
|
68 |
-
norm_type (float): type of the used p-norm.
|
69 |
-
logging_interval (str): "step" or "epoch".
|
70 |
-
"""
|
71 |
-
super().__init__()
|
72 |
-
|
73 |
-
self.norm_type = norm_type
|
74 |
-
self.logging_interval = logging_interval
|
75 |
-
self.sub_module = sub_module
|
76 |
-
|
77 |
-
def on_after_backward(self, trainer: Trainer, model: LightningModule) -> None:
|
78 |
-
"""
|
79 |
-
Computes the gradient norm of the model parameters and logs it to the logger.
|
80 |
-
|
81 |
-
Args:
|
82 |
-
trainer (Trainer): The trainer object
|
83 |
-
model (LightningModule): The current lightningModule
|
84 |
-
"""
|
85 |
-
|
86 |
-
lightning_model = model
|
87 |
-
|
88 |
-
if self.sub_module is None:
|
89 |
-
return self.log_sub_module_grad_norm(lightning_model, model, "")
|
90 |
-
|
91 |
-
sub_modules = self.sub_module
|
92 |
-
if isinstance(sub_modules, str):
|
93 |
-
sub_modules = [sub_modules]
|
94 |
-
|
95 |
-
for sub_module in sub_modules:
|
96 |
-
self.log_sub_module_grad_norm(
|
97 |
-
lightning_model, getattr(model, sub_module), f"/{sub_module}"
|
98 |
-
)
|
99 |
-
|
100 |
-
def log_sub_module_grad_norm(
|
101 |
-
self, lightning_model: LightningModule, model: nn.Module, path: str
|
102 |
-
) -> None:
|
103 |
-
grad_norm_val = grad_norm(model.parameters(), self.norm_type)
|
104 |
-
if grad_norm_val is None:
|
105 |
-
return
|
106 |
-
|
107 |
-
on_step = self.logging_interval == "step"
|
108 |
-
lightning_model.log(
|
109 |
-
f"train{path}/grad_norm",
|
110 |
-
grad_norm_val,
|
111 |
-
on_step=on_step,
|
112 |
-
on_epoch=not on_step,
|
113 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/configs/base.yaml
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
# Base configuration for training a model
|
2 |
-
paths:
|
3 |
-
run_dir: results/${project}
|
4 |
-
ckpt_dir: ${paths.run_dir}/checkpoints
|
5 |
-
|
6 |
-
hydra:
|
7 |
-
run:
|
8 |
-
dir: ${paths.run_dir}
|
9 |
-
|
10 |
-
# Lightning Trainer
|
11 |
-
trainer:
|
12 |
-
_target_: lightning.pytorch.trainer.Trainer
|
13 |
-
|
14 |
-
default_root_dir: ${paths.run_dir}
|
15 |
-
accelerator: gpu
|
16 |
-
num_nodes: 1
|
17 |
-
devices: auto
|
18 |
-
strategy:
|
19 |
-
_target_: lightning.pytorch.strategies.DDPStrategy
|
20 |
-
process_group_backend: nccl # This should be override when training on windows
|
21 |
-
|
22 |
-
precision: bf16-mixed
|
23 |
-
|
24 |
-
# disable validation by epoch end
|
25 |
-
check_val_every_n_epoch: null
|
26 |
-
val_check_interval: 5000
|
27 |
-
max_steps: 100_000
|
28 |
-
|
29 |
-
# Use torch.backends.cudnn.benchmark to speed up training
|
30 |
-
benchmark: true
|
31 |
-
|
32 |
-
# Callbacks
|
33 |
-
callbacks:
|
34 |
-
model_checkpoint:
|
35 |
-
_target_: lightning.pytorch.callbacks.ModelCheckpoint
|
36 |
-
dirpath: ${paths.ckpt_dir}
|
37 |
-
filename: "step_{step:09d}"
|
38 |
-
save_last: false # additionally always save an exact copy of the last checkpoint to a file last.ckpt
|
39 |
-
save_top_k: 5 # save 5 latest checkpoints
|
40 |
-
monitor: step # use step to monitor checkpoints
|
41 |
-
mode: max # save the latest checkpoint with the highest global_step
|
42 |
-
every_n_epochs: null # don't save checkpoints by epoch end
|
43 |
-
every_n_train_steps: 5000 # save checkpoints every 5000 steps
|
44 |
-
auto_insert_metric_name: false
|
45 |
-
|
46 |
-
model_summary:
|
47 |
-
_target_: lightning.pytorch.callbacks.ModelSummary
|
48 |
-
max_depth: 2 # the maximum depth of layer nesting that the summary will include
|
49 |
-
|
50 |
-
learning_rate_monitor:
|
51 |
-
_target_: lightning.pytorch.callbacks.LearningRateMonitor
|
52 |
-
logging_interval: step
|
53 |
-
log_momentum: false
|
54 |
-
|
55 |
-
grad_norm_monitor:
|
56 |
-
_target_: fish_speech.callbacks.GradNormMonitor
|
57 |
-
norm_type: 2
|
58 |
-
logging_interval: step
|
59 |
-
|
60 |
-
# Logger
|
61 |
-
logger:
|
62 |
-
tensorboard:
|
63 |
-
_target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger
|
64 |
-
save_dir: "${paths.run_dir}/tensorboard/"
|
65 |
-
name: null
|
66 |
-
log_graph: false
|
67 |
-
default_hp_metric: true
|
68 |
-
prefix: ""
|
69 |
-
|
70 |
-
# wandb:
|
71 |
-
# _target_: lightning.pytorch.loggers.wandb.WandbLogger
|
72 |
-
# # name: "" # name of the run (normally generated by wandb)
|
73 |
-
# save_dir: "${paths.run_dir}"
|
74 |
-
# offline: False
|
75 |
-
# id: null # pass correct id to resume experiment!
|
76 |
-
# anonymous: null # enable anonymous logging
|
77 |
-
# project: "fish-speech"
|
78 |
-
# log_model: False # upload lightning ckpts
|
79 |
-
# prefix: "" # a string to put at the beginning of metric keys
|
80 |
-
# # entity: "" # set to name of your wandb team
|
81 |
-
# group: ""
|
82 |
-
# tags: ["vq", "hq", "finetune"]
|
83 |
-
# job_type: ""
|
84 |
-
|
85 |
-
# Loop
|
86 |
-
train: true
|
87 |
-
test: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/configs/firefly_gan_vq.yaml
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
_target_: fish_speech.models.vqgan.modules.firefly.FireflyArchitecture
|
2 |
-
spec_transform:
|
3 |
-
_target_: fish_speech.utils.spectrogram.LogMelSpectrogram
|
4 |
-
sample_rate: 44100
|
5 |
-
n_mels: 160
|
6 |
-
n_fft: 2048
|
7 |
-
hop_length: 512
|
8 |
-
win_length: 2048
|
9 |
-
backbone:
|
10 |
-
_target_: fish_speech.models.vqgan.modules.firefly.ConvNeXtEncoder
|
11 |
-
input_channels: 160
|
12 |
-
depths: [3, 3, 9, 3]
|
13 |
-
dims: [128, 256, 384, 512]
|
14 |
-
drop_path_rate: 0.2
|
15 |
-
kernel_size: 7
|
16 |
-
head:
|
17 |
-
_target_: fish_speech.models.vqgan.modules.firefly.HiFiGANGenerator
|
18 |
-
hop_length: 512
|
19 |
-
upsample_rates: [8, 8, 2, 2, 2] # aka. strides
|
20 |
-
upsample_kernel_sizes: [16, 16, 4, 4, 4]
|
21 |
-
resblock_kernel_sizes: [3, 7, 11]
|
22 |
-
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
23 |
-
num_mels: 512
|
24 |
-
upsample_initial_channel: 512
|
25 |
-
pre_conv_kernel_size: 13
|
26 |
-
post_conv_kernel_size: 13
|
27 |
-
quantizer:
|
28 |
-
_target_: fish_speech.models.vqgan.modules.fsq.DownsampleFiniteScalarQuantize
|
29 |
-
input_dim: 512
|
30 |
-
n_groups: 8
|
31 |
-
n_codebooks: 1
|
32 |
-
levels: [8, 5, 5, 5]
|
33 |
-
downsample_factor: [2, 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/configs/lora/r_8_alpha_16.yaml
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
_target_: fish_speech.models.text2semantic.lora.LoraConfig
|
2 |
-
r: 8
|
3 |
-
lora_alpha: 16
|
4 |
-
lora_dropout: 0.01
|
|
|
|
|
|
|
|
|
|
fish_speech/configs/text2semantic_finetune.yaml
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
defaults:
|
2 |
-
- base
|
3 |
-
- _self_
|
4 |
-
|
5 |
-
project: text2semantic_finetune_dual_ar
|
6 |
-
max_length: 4096
|
7 |
-
pretrained_ckpt_path: checkpoints/fish-speech-1.4
|
8 |
-
|
9 |
-
# Lightning Trainer
|
10 |
-
trainer:
|
11 |
-
accumulate_grad_batches: 1
|
12 |
-
gradient_clip_val: 1.0
|
13 |
-
gradient_clip_algorithm: "norm"
|
14 |
-
max_steps: 1000
|
15 |
-
precision: bf16-true
|
16 |
-
limit_val_batches: 10
|
17 |
-
val_check_interval: 100
|
18 |
-
|
19 |
-
# Dataset Configuration
|
20 |
-
tokenizer:
|
21 |
-
_target_: transformers.AutoTokenizer.from_pretrained
|
22 |
-
pretrained_model_name_or_path: ${pretrained_ckpt_path}
|
23 |
-
|
24 |
-
# Dataset Configuration
|
25 |
-
train_dataset:
|
26 |
-
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset
|
27 |
-
proto_files:
|
28 |
-
- data/protos
|
29 |
-
tokenizer: ${tokenizer}
|
30 |
-
causal: true
|
31 |
-
max_length: ${max_length}
|
32 |
-
use_speaker: false
|
33 |
-
interactive_prob: 0.7
|
34 |
-
|
35 |
-
val_dataset:
|
36 |
-
_target_: fish_speech.datasets.semantic.AutoTextSemanticInstructionDataset
|
37 |
-
proto_files:
|
38 |
-
- data/protos
|
39 |
-
tokenizer: ${tokenizer}
|
40 |
-
causal: true
|
41 |
-
max_length: ${max_length}
|
42 |
-
use_speaker: false
|
43 |
-
interactive_prob: 0.7
|
44 |
-
|
45 |
-
data:
|
46 |
-
_target_: fish_speech.datasets.semantic.SemanticDataModule
|
47 |
-
train_dataset: ${train_dataset}
|
48 |
-
val_dataset: ${val_dataset}
|
49 |
-
num_workers: 4
|
50 |
-
batch_size: 8
|
51 |
-
tokenizer: ${tokenizer}
|
52 |
-
max_length: ${max_length}
|
53 |
-
|
54 |
-
# Model Configuration
|
55 |
-
model:
|
56 |
-
_target_: fish_speech.models.text2semantic.lit_module.TextToSemantic
|
57 |
-
model:
|
58 |
-
_target_: fish_speech.models.text2semantic.llama.BaseTransformer.from_pretrained
|
59 |
-
path: ${pretrained_ckpt_path}
|
60 |
-
load_weights: true
|
61 |
-
max_length: ${max_length}
|
62 |
-
lora_config: null
|
63 |
-
|
64 |
-
optimizer:
|
65 |
-
_target_: torch.optim.AdamW
|
66 |
-
_partial_: true
|
67 |
-
lr: 1e-4
|
68 |
-
weight_decay: 0
|
69 |
-
betas: [0.9, 0.95]
|
70 |
-
eps: 1e-5
|
71 |
-
|
72 |
-
lr_scheduler:
|
73 |
-
_target_: torch.optim.lr_scheduler.LambdaLR
|
74 |
-
_partial_: true
|
75 |
-
lr_lambda:
|
76 |
-
_target_: fish_speech.scheduler.get_constant_schedule_with_warmup_lr_lambda
|
77 |
-
_partial_: true
|
78 |
-
num_warmup_steps: 10
|
79 |
-
|
80 |
-
# Callbacks
|
81 |
-
callbacks:
|
82 |
-
model_checkpoint:
|
83 |
-
every_n_train_steps: ${trainer.val_check_interval}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/conversation.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
SEMANTIC_TOKEN = "<|semantic|>"
|
2 |
-
CODEBOOK_PAD_TOKEN_ID = 0
|
|
|
|
|
|
fish_speech/datasets/__pycache__/semantic.cpython-310.pyc
DELETED
Binary file (12.4 kB)
|
|
fish_speech/datasets/concat_repeat.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
import bisect
|
2 |
-
import random
|
3 |
-
from typing import Iterable
|
4 |
-
|
5 |
-
from torch.utils.data import Dataset, IterableDataset
|
6 |
-
|
7 |
-
|
8 |
-
class ConcatRepeatDataset(Dataset):
|
9 |
-
datasets: list[Dataset]
|
10 |
-
cumulative_sizes: list[int]
|
11 |
-
repeats: list[int]
|
12 |
-
|
13 |
-
@staticmethod
|
14 |
-
def cumsum(sequence, repeats):
|
15 |
-
r, s = [], 0
|
16 |
-
for dataset, repeat in zip(sequence, repeats):
|
17 |
-
l = len(dataset) * repeat
|
18 |
-
r.append(l + s)
|
19 |
-
s += l
|
20 |
-
return r
|
21 |
-
|
22 |
-
def __init__(self, datasets: Iterable[Dataset], repeats: list[int]):
|
23 |
-
super().__init__()
|
24 |
-
|
25 |
-
self.datasets = list(datasets)
|
26 |
-
self.repeats = repeats
|
27 |
-
|
28 |
-
assert len(self.datasets) > 0, "datasets should not be an empty iterable"
|
29 |
-
assert len(self.datasets) == len(
|
30 |
-
repeats
|
31 |
-
), "datasets and repeats should have the same length"
|
32 |
-
|
33 |
-
for d in self.datasets:
|
34 |
-
assert not isinstance(
|
35 |
-
d, IterableDataset
|
36 |
-
), "ConcatRepeatDataset does not support IterableDataset"
|
37 |
-
|
38 |
-
self.cumulative_sizes = self.cumsum(self.datasets, self.repeats)
|
39 |
-
|
40 |
-
def __len__(self):
|
41 |
-
return self.cumulative_sizes[-1]
|
42 |
-
|
43 |
-
def __getitem__(self, idx):
|
44 |
-
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
|
45 |
-
|
46 |
-
if dataset_idx == 0:
|
47 |
-
sample_idx = idx
|
48 |
-
else:
|
49 |
-
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
|
50 |
-
|
51 |
-
dataset = self.datasets[dataset_idx]
|
52 |
-
|
53 |
-
return dataset[sample_idx % len(dataset)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/datasets/protos/__pycache__/text_data_pb2.cpython-310.pyc
DELETED
Binary file (1.26 kB)
|
|
fish_speech/datasets/protos/__pycache__/text_data_stream.cpython-310.pyc
DELETED
Binary file (1.13 kB)
|
|
fish_speech/datasets/protos/text-data.proto
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
syntax = "proto3";
|
2 |
-
|
3 |
-
package text_data;
|
4 |
-
|
5 |
-
message Semantics {
|
6 |
-
repeated uint32 values = 1;
|
7 |
-
}
|
8 |
-
|
9 |
-
message Sentence {
|
10 |
-
repeated string texts = 1;
|
11 |
-
repeated Semantics semantics = 3;
|
12 |
-
}
|
13 |
-
|
14 |
-
message TextData {
|
15 |
-
string source = 1;
|
16 |
-
string name = 2;
|
17 |
-
repeated Sentence sentences = 4;
|
18 |
-
}
|
19 |
-
|
20 |
-
message SampledData {
|
21 |
-
string source = 1;
|
22 |
-
string name = 2;
|
23 |
-
repeated Sentence samples = 3;
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/datasets/protos/text_data_pb2.py
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
# Generated by the protocol buffer compiler. DO NOT EDIT!
|
3 |
-
# source: text-data.proto
|
4 |
-
# Protobuf Python Version: 4.25.1
|
5 |
-
"""Generated protocol buffer code."""
|
6 |
-
from google.protobuf import descriptor as _descriptor
|
7 |
-
from google.protobuf import descriptor_pool as _descriptor_pool
|
8 |
-
from google.protobuf import symbol_database as _symbol_database
|
9 |
-
from google.protobuf.internal import builder as _builder
|
10 |
-
|
11 |
-
# @@protoc_insertion_point(imports)
|
12 |
-
|
13 |
-
_sym_db = _symbol_database.Default()
|
14 |
-
|
15 |
-
|
16 |
-
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
|
17 |
-
b'\n\x0ftext-data.proto\x12\ttext_data"\x1b\n\tSemantics\x12\x0e\n\x06values\x18\x01 \x03(\r"B\n\x08Sentence\x12\r\n\x05texts\x18\x01 \x03(\t\x12\'\n\tsemantics\x18\x03 \x03(\x0b\x32\x14.text_data.Semantics"P\n\x08TextData\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12&\n\tsentences\x18\x04 \x03(\x0b\x32\x13.text_data.Sentence"Q\n\x0bSampledData\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12$\n\x07samples\x18\x03 \x03(\x0b\x32\x13.text_data.Sentenceb\x06proto3'
|
18 |
-
)
|
19 |
-
|
20 |
-
_globals = globals()
|
21 |
-
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
|
22 |
-
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "text_data_pb2", _globals)
|
23 |
-
if _descriptor._USE_C_DESCRIPTORS == False:
|
24 |
-
DESCRIPTOR._options = None
|
25 |
-
_globals["_SEMANTICS"]._serialized_start = 30
|
26 |
-
_globals["_SEMANTICS"]._serialized_end = 57
|
27 |
-
_globals["_SENTENCE"]._serialized_start = 59
|
28 |
-
_globals["_SENTENCE"]._serialized_end = 125
|
29 |
-
_globals["_TEXTDATA"]._serialized_start = 127
|
30 |
-
_globals["_TEXTDATA"]._serialized_end = 207
|
31 |
-
_globals["_SAMPLEDDATA"]._serialized_start = 209
|
32 |
-
_globals["_SAMPLEDDATA"]._serialized_end = 290
|
33 |
-
# @@protoc_insertion_point(module_scope)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/datasets/protos/text_data_stream.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
import struct
|
2 |
-
|
3 |
-
from .text_data_pb2 import TextData
|
4 |
-
|
5 |
-
|
6 |
-
def read_pb_stream(f):
|
7 |
-
while True:
|
8 |
-
buf = f.read(4)
|
9 |
-
if len(buf) == 0:
|
10 |
-
break
|
11 |
-
size = struct.unpack("I", buf)[0]
|
12 |
-
buf = f.read(size)
|
13 |
-
text_data = TextData()
|
14 |
-
text_data.ParseFromString(buf)
|
15 |
-
yield text_data
|
16 |
-
|
17 |
-
|
18 |
-
def write_pb_stream(f, text_data):
|
19 |
-
buf = text_data.SerializeToString()
|
20 |
-
f.write(struct.pack("I", len(buf)))
|
21 |
-
f.write(buf)
|
22 |
-
|
23 |
-
|
24 |
-
def pack_pb_stream(text_data):
|
25 |
-
buf = text_data.SerializeToString()
|
26 |
-
return struct.pack("I", len(buf)) + buf
|
27 |
-
|
28 |
-
|
29 |
-
def split_pb_stream(f):
|
30 |
-
while True:
|
31 |
-
head = f.read(4)
|
32 |
-
if len(head) == 0:
|
33 |
-
break
|
34 |
-
size = struct.unpack("I", head)[0]
|
35 |
-
buf = f.read(size)
|
36 |
-
yield head + buf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/datasets/semantic.py
DELETED
@@ -1,496 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
from dataclasses import dataclass
|
3 |
-
from itertools import chain
|
4 |
-
from pathlib import Path
|
5 |
-
from random import Random
|
6 |
-
from typing import Optional, Union
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import pyarrow.parquet as pq
|
10 |
-
import torch
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from datasets.download.streaming_download_manager import xopen
|
13 |
-
from huggingface_hub import HfApi
|
14 |
-
from lightning import LightningDataModule
|
15 |
-
from torch.distributed import get_rank, get_world_size, is_initialized
|
16 |
-
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
|
17 |
-
from transformers import AutoTokenizer
|
18 |
-
|
19 |
-
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
|
20 |
-
from fish_speech.datasets.protos.text_data_pb2 import SampledData
|
21 |
-
from fish_speech.datasets.protos.text_data_stream import read_pb_stream
|
22 |
-
from fish_speech.text.clean import clean_text
|
23 |
-
from fish_speech.utils import RankedLogger
|
24 |
-
from fish_speech.utils.braceexpand import braceexpand
|
25 |
-
|
26 |
-
log = RankedLogger(__name__, rank_zero_only=True)
|
27 |
-
|
28 |
-
|
29 |
-
def split_by_rank_worker(files):
|
30 |
-
# We need to know the total number of devices
|
31 |
-
# to split the data properly
|
32 |
-
|
33 |
-
total_devices = 1
|
34 |
-
if is_initialized():
|
35 |
-
total_devices = get_world_size()
|
36 |
-
|
37 |
-
worker_info = get_worker_info()
|
38 |
-
if worker_info is not None:
|
39 |
-
total_devices *= worker_info.num_workers
|
40 |
-
|
41 |
-
if len(files) < total_devices:
|
42 |
-
# Repeat the files N times to match the number of devices
|
43 |
-
files = files * (total_devices // len(files) + 1)
|
44 |
-
|
45 |
-
# DDP
|
46 |
-
if is_initialized():
|
47 |
-
files = files[get_rank() :: get_world_size()]
|
48 |
-
|
49 |
-
# Split by worker
|
50 |
-
if worker_info is not None:
|
51 |
-
files = files[worker_info.id :: worker_info.num_workers]
|
52 |
-
|
53 |
-
return files
|
54 |
-
|
55 |
-
|
56 |
-
class AutoTextSemanticInstructionDataset(IterableDataset):
|
57 |
-
"""
|
58 |
-
Auto Augment Dataset by Speaker
|
59 |
-
|
60 |
-
1. Random concatenate multiple sentences from the same speaker to form a longer sentence
|
61 |
-
2. Automatically normalize the text
|
62 |
-
|
63 |
-
For interactive mode, we use the following format (multiple sequences):
|
64 |
-
<s> [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] </s>
|
65 |
-
|
66 |
-
For non-interactive mode, we use the following format (one long sequence):
|
67 |
-
<s> [INST] text [/INST] ... </s>
|
68 |
-
"""
|
69 |
-
|
70 |
-
def __init__(
|
71 |
-
self,
|
72 |
-
proto_files: list[str],
|
73 |
-
seed: int = 42,
|
74 |
-
interactive_prob: float = 0.5,
|
75 |
-
max_length: int = 1024,
|
76 |
-
tokenizer: AutoTokenizer = None,
|
77 |
-
use_speaker: bool | float = True,
|
78 |
-
causal: bool = True,
|
79 |
-
num_codebooks: Optional[int] = None,
|
80 |
-
skip_text_prob: float = 0.0,
|
81 |
-
):
|
82 |
-
"""
|
83 |
-
Args:
|
84 |
-
proto_files: proto buf files if using local data
|
85 |
-
seed: random seed
|
86 |
-
interactive_prob: probability to use interactive mode
|
87 |
-
max_length: max length of the text
|
88 |
-
tokenizer: tokenizer
|
89 |
-
use_speaker: include speaker information in the prompt
|
90 |
-
causal: use causal sampling when using local data, disable will lead to random sampling
|
91 |
-
num_codebooks: number of codebooks, if None, it will be automatically detected
|
92 |
-
skip_text_prob: probability to skip the text (audio only), this only applies to interactive mode
|
93 |
-
"""
|
94 |
-
|
95 |
-
super().__init__()
|
96 |
-
|
97 |
-
assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]"
|
98 |
-
|
99 |
-
self.seed = seed
|
100 |
-
self.max_length = max_length
|
101 |
-
self.tokenizer = tokenizer
|
102 |
-
self.interactive_prob = interactive_prob
|
103 |
-
self.use_speaker = use_speaker
|
104 |
-
self.proto_files = proto_files
|
105 |
-
self.causal = causal
|
106 |
-
self.num_codebooks = num_codebooks
|
107 |
-
self.skip_text_prob = skip_text_prob
|
108 |
-
|
109 |
-
self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>")
|
110 |
-
self.groups = None
|
111 |
-
|
112 |
-
def init_mock_data_server(self):
|
113 |
-
if self.groups is not None:
|
114 |
-
return
|
115 |
-
|
116 |
-
# Expand the proto files
|
117 |
-
expanded_proto_files = []
|
118 |
-
for filename in self.proto_files:
|
119 |
-
for i in braceexpand(filename):
|
120 |
-
i = Path(i)
|
121 |
-
if i.is_file():
|
122 |
-
expanded_proto_files.append(i)
|
123 |
-
elif i.is_dir():
|
124 |
-
expanded_proto_files.extend(i.rglob("*.proto"))
|
125 |
-
expanded_proto_files.extend(i.rglob("*.protos"))
|
126 |
-
else:
|
127 |
-
raise ValueError(f"{i} is not a file or directory")
|
128 |
-
|
129 |
-
expanded_proto_files = sorted(expanded_proto_files)
|
130 |
-
Random(self.seed).shuffle(expanded_proto_files)
|
131 |
-
|
132 |
-
self.groups = []
|
133 |
-
shard_proto_files = split_by_rank_worker(expanded_proto_files)
|
134 |
-
log.info(
|
135 |
-
f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files"
|
136 |
-
)
|
137 |
-
|
138 |
-
count = 0
|
139 |
-
for filename in shard_proto_files:
|
140 |
-
with open(filename, "rb") as f:
|
141 |
-
for text_data in read_pb_stream(f):
|
142 |
-
self.groups.append(text_data)
|
143 |
-
count += 1
|
144 |
-
|
145 |
-
log.info(f"Read total {count} groups of data")
|
146 |
-
|
147 |
-
# Shuffle the lines
|
148 |
-
Random(self.seed).shuffle(self.groups)
|
149 |
-
self.group_weights = [len(i.sentences) for i in self.groups]
|
150 |
-
|
151 |
-
def __iter__(self):
|
152 |
-
while True:
|
153 |
-
yield self.augment()
|
154 |
-
|
155 |
-
def tokenize_sentence(self, sentence: str):
|
156 |
-
sentence = clean_text(sentence)
|
157 |
-
tokens = self.tokenizer.encode(
|
158 |
-
f"{sentence}",
|
159 |
-
max_length=10**6,
|
160 |
-
add_special_tokens=False,
|
161 |
-
truncation=False,
|
162 |
-
)
|
163 |
-
return sentence, len(tokens)
|
164 |
-
|
165 |
-
def sample_data(self):
|
166 |
-
if self.groups is None:
|
167 |
-
self.init_mock_data_server()
|
168 |
-
|
169 |
-
# Shuffle unique lines, estimate that each sample is at least 20 tokens
|
170 |
-
num_samples = self.max_length // 20
|
171 |
-
|
172 |
-
# choice group based on their number of samples
|
173 |
-
group = random.choices(self.groups, weights=self.group_weights, k=1)[0]
|
174 |
-
|
175 |
-
if self.causal:
|
176 |
-
# Sample in order
|
177 |
-
if num_samples >= len(group.sentences):
|
178 |
-
samples = group.sentences
|
179 |
-
else:
|
180 |
-
begin = random.randint(0, len(group.sentences) - num_samples)
|
181 |
-
samples = group.sentences[begin : begin + num_samples]
|
182 |
-
else:
|
183 |
-
samples = random.choices(
|
184 |
-
group.sentences, k=min(num_samples, len(group.sentences))
|
185 |
-
)
|
186 |
-
|
187 |
-
return SampledData(
|
188 |
-
source=group.source,
|
189 |
-
name=group.name,
|
190 |
-
samples=samples,
|
191 |
-
)
|
192 |
-
|
193 |
-
def augment(self):
|
194 |
-
final_text, final_semantic = [], []
|
195 |
-
response = self.sample_data()
|
196 |
-
if len(response.samples) == 0:
|
197 |
-
# Invalid group
|
198 |
-
return None
|
199 |
-
|
200 |
-
samples = list(response.samples)
|
201 |
-
idx = 0
|
202 |
-
use_interactive = random.random() < self.interactive_prob
|
203 |
-
|
204 |
-
if use_interactive is False:
|
205 |
-
# Random sample based on speaker using a truncated normal distribution
|
206 |
-
a = torch.tensor([0], dtype=torch.float32)
|
207 |
-
torch.nn.init.trunc_normal_(
|
208 |
-
a,
|
209 |
-
mean=self.max_length // 2,
|
210 |
-
std=self.max_length // 4,
|
211 |
-
a=10,
|
212 |
-
b=self.max_length,
|
213 |
-
)
|
214 |
-
remaining_tokens = a.long().item() - 4
|
215 |
-
else:
|
216 |
-
remaining_tokens = self.max_length
|
217 |
-
|
218 |
-
# Use speaker
|
219 |
-
if isinstance(self.use_speaker, float):
|
220 |
-
use_speaker = random.random() < self.use_speaker
|
221 |
-
else:
|
222 |
-
use_speaker = self.use_speaker
|
223 |
-
|
224 |
-
all_tokens, all_labels = [], []
|
225 |
-
while remaining_tokens > 0 and len(samples) > 0:
|
226 |
-
sentence = samples.pop(0)
|
227 |
-
|
228 |
-
text = random.choice(sentence.texts)
|
229 |
-
text, length = self.tokenize_sentence(text)
|
230 |
-
remaining_tokens -= length + len(sentence.semantics[0].values)
|
231 |
-
|
232 |
-
if use_interactive is False:
|
233 |
-
final_text.append(text)
|
234 |
-
final_semantic.append(sentence.semantics)
|
235 |
-
else:
|
236 |
-
# For interactive mode, we only apply speaker for the first sentence
|
237 |
-
# [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST]
|
238 |
-
tokens, labels = self.pack_sentences(
|
239 |
-
sentences=[text],
|
240 |
-
semantics=[sentence.semantics],
|
241 |
-
speaker=response.name if use_speaker else None,
|
242 |
-
skip_text=random.random() < self.skip_text_prob,
|
243 |
-
)
|
244 |
-
|
245 |
-
all_tokens.append(tokens)
|
246 |
-
all_labels.append(labels)
|
247 |
-
|
248 |
-
idx += 1
|
249 |
-
|
250 |
-
if use_interactive is False:
|
251 |
-
tokens, labels = self.pack_sentences(
|
252 |
-
final_text,
|
253 |
-
semantics=final_semantic,
|
254 |
-
speaker=response.name if use_speaker else None,
|
255 |
-
)
|
256 |
-
all_tokens.append(tokens)
|
257 |
-
all_labels.append(labels)
|
258 |
-
|
259 |
-
tokens = torch.cat(all_tokens, dim=1)
|
260 |
-
labels = torch.cat(all_labels, dim=1)
|
261 |
-
|
262 |
-
# Verify that the length is correct
|
263 |
-
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"
|
264 |
-
|
265 |
-
data = {"tokens": tokens, "labels": labels}
|
266 |
-
|
267 |
-
return data
|
268 |
-
|
269 |
-
def pack_sentences(
|
270 |
-
self,
|
271 |
-
sentences: list[str],
|
272 |
-
semantics: list,
|
273 |
-
speaker: Optional[str] = None,
|
274 |
-
skip_text: bool = False,
|
275 |
-
):
|
276 |
-
if speaker is None:
|
277 |
-
speaker = "assistant"
|
278 |
-
|
279 |
-
cated_sentences = " ".join(sentences)
|
280 |
-
if skip_text:
|
281 |
-
cated_sentences = "<|skip_text|>"
|
282 |
-
|
283 |
-
final_text = "<|im_start|>user\n" + cated_sentences + "<|im_end|>"
|
284 |
-
final_text = final_text + f"<|im_start|>{speaker}\n"
|
285 |
-
|
286 |
-
encoded = self.tokenizer.encode(
|
287 |
-
final_text,
|
288 |
-
add_special_tokens=False,
|
289 |
-
truncation=False,
|
290 |
-
max_length=10**6,
|
291 |
-
)
|
292 |
-
semantic_length = sum([len(i[0].values) for i in semantics])
|
293 |
-
prompt_length = len(encoded)
|
294 |
-
num_codebooks = (
|
295 |
-
len(semantics[0]) if self.num_codebooks is None else self.num_codebooks
|
296 |
-
)
|
297 |
-
|
298 |
-
# Pack the tokens and semantics (add <s> and </s> to semantic tokens)
|
299 |
-
tokens = (
|
300 |
-
encoded
|
301 |
-
+ [self.semantic_token_id] * semantic_length
|
302 |
-
+ self.tokenizer.convert_tokens_to_ids(["<|im_end|>"])
|
303 |
-
)
|
304 |
-
|
305 |
-
# Codebook bos/padding: 0, eos: 1
|
306 |
-
codes = [[CODEBOOK_PAD_TOKEN_ID] * prompt_length for _ in range(num_codebooks)]
|
307 |
-
for segment in semantics:
|
308 |
-
for book_idx, book in zip(range(num_codebooks), segment):
|
309 |
-
for j in book.values:
|
310 |
-
codes[book_idx].append(int(j) + 1)
|
311 |
-
|
312 |
-
for book in codes:
|
313 |
-
book.extend([CODEBOOK_PAD_TOKEN_ID] * 1)
|
314 |
-
|
315 |
-
tokens = [tokens] + codes
|
316 |
-
|
317 |
-
tokens = torch.tensor(tokens, dtype=torch.long)
|
318 |
-
labels = tokens.clone()
|
319 |
-
|
320 |
-
if skip_text:
|
321 |
-
# If text is not provided, the sentence is used for condition only, all labels are -100
|
322 |
-
torch.fill_(labels, -100)
|
323 |
-
return tokens, labels
|
324 |
-
|
325 |
-
# Mask out the <s> tokens for semantic, predict semantic tokens only
|
326 |
-
# Since we don't mask out the input tokens, the language modeling still works
|
327 |
-
labels[1:, :prompt_length] = -100
|
328 |
-
|
329 |
-
tokens = tokens[:, :-1]
|
330 |
-
labels = labels[:, 1:]
|
331 |
-
|
332 |
-
# Verify the padding is correct, and the last token is eos
|
333 |
-
assert (tokens[1:, :prompt_length] == CODEBOOK_PAD_TOKEN_ID).all()
|
334 |
-
assert (labels[1:, -1:] == CODEBOOK_PAD_TOKEN_ID).all()
|
335 |
-
|
336 |
-
return tokens, labels
|
337 |
-
|
338 |
-
|
339 |
-
@dataclass
|
340 |
-
class TextDataCollator:
|
341 |
-
tokenizer: AutoTokenizer
|
342 |
-
max_length: int = 1024
|
343 |
-
|
344 |
-
def __call__(self, examples):
|
345 |
-
if "negative_tokens" in examples:
|
346 |
-
positive_examples = []
|
347 |
-
negative_examples = []
|
348 |
-
|
349 |
-
for i in examples:
|
350 |
-
positive_examples.append(
|
351 |
-
{
|
352 |
-
"tokens": i["tokens"],
|
353 |
-
"labels": i["labels"],
|
354 |
-
}
|
355 |
-
)
|
356 |
-
negative_examples.append(
|
357 |
-
{
|
358 |
-
"tokens": i["negative_tokens"],
|
359 |
-
"labels": i["negative_labels"],
|
360 |
-
}
|
361 |
-
)
|
362 |
-
|
363 |
-
examples = positive_examples + negative_examples
|
364 |
-
|
365 |
-
return self.batchify(examples)
|
366 |
-
|
367 |
-
def batchify(self, examples, tokens_key="tokens", labels_key="labels"):
|
368 |
-
tokens, attention_masks, labels = [], [], []
|
369 |
-
|
370 |
-
# Calculate the max length
|
371 |
-
max_tokens_length = 0
|
372 |
-
for example in examples:
|
373 |
-
max_tokens_length = max(max_tokens_length, example[tokens_key].size(1))
|
374 |
-
max_tokens_length = min(max_tokens_length, self.max_length)
|
375 |
-
|
376 |
-
for example in examples:
|
377 |
-
_tokens = example[tokens_key][:, :max_tokens_length]
|
378 |
-
_labels = example[labels_key][:, :max_tokens_length]
|
379 |
-
_attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool)
|
380 |
-
tokens_length = _tokens.size(1)
|
381 |
-
_attention_mask[:tokens_length] = False
|
382 |
-
|
383 |
-
assert tokens_length == _labels.size(
|
384 |
-
1
|
385 |
-
), f"{tokens_length} != {_labels.size(1)}"
|
386 |
-
|
387 |
-
if tokens_length < max_tokens_length:
|
388 |
-
_tokens = F.pad(
|
389 |
-
_tokens,
|
390 |
-
(0, max_tokens_length - tokens_length),
|
391 |
-
value=self.tokenizer.eos_token_id,
|
392 |
-
)
|
393 |
-
_tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID
|
394 |
-
_labels = F.pad(
|
395 |
-
_labels, (0, max_tokens_length - _labels.size(1)), value=-100
|
396 |
-
)
|
397 |
-
|
398 |
-
tokens.append(_tokens)
|
399 |
-
attention_masks.append(_attention_mask)
|
400 |
-
labels.append(_labels)
|
401 |
-
|
402 |
-
tokens = torch.stack(tokens, dim=0)
|
403 |
-
attention_masks = torch.stack(attention_masks, dim=0)
|
404 |
-
labels = torch.stack(labels, dim=0)
|
405 |
-
|
406 |
-
return {
|
407 |
-
"inputs": tokens,
|
408 |
-
"attention_masks": attention_masks,
|
409 |
-
"labels": labels,
|
410 |
-
}
|
411 |
-
|
412 |
-
|
413 |
-
class InterleaveDataset(IterableDataset):
|
414 |
-
def __init__(
|
415 |
-
self,
|
416 |
-
datasets: list[IterableDataset],
|
417 |
-
probabilities: list[float],
|
418 |
-
seed: int = 42,
|
419 |
-
):
|
420 |
-
super().__init__()
|
421 |
-
|
422 |
-
self.datasets = datasets
|
423 |
-
self.probabilities = probabilities
|
424 |
-
self.seed = seed
|
425 |
-
|
426 |
-
def __iter__(self):
|
427 |
-
rng = np.random.default_rng(self.seed)
|
428 |
-
dataset_iterators = [iter(dataset) for dataset in self.datasets]
|
429 |
-
|
430 |
-
while True:
|
431 |
-
# Random choice one
|
432 |
-
dataset_idx = rng.choice(len(self.datasets), p=self.probabilities)
|
433 |
-
dataset_iterator = dataset_iterators[dataset_idx]
|
434 |
-
|
435 |
-
try:
|
436 |
-
yield next(dataset_iterator)
|
437 |
-
except StopIteration:
|
438 |
-
# Exhausted, create a new iterator
|
439 |
-
dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx])
|
440 |
-
yield next(dataset_iterators[dataset_idx])
|
441 |
-
|
442 |
-
|
443 |
-
class SemanticDataModule(LightningDataModule):
|
444 |
-
def __init__(
|
445 |
-
self,
|
446 |
-
train_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset],
|
447 |
-
val_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset],
|
448 |
-
batch_size: int = 32,
|
449 |
-
tokenizer: AutoTokenizer = None,
|
450 |
-
max_length: int = 1024,
|
451 |
-
num_workers: int = 4,
|
452 |
-
):
|
453 |
-
super().__init__()
|
454 |
-
|
455 |
-
self.train_dataset = train_dataset
|
456 |
-
self.val_dataset = val_dataset
|
457 |
-
self.batch_size = batch_size
|
458 |
-
self.tokenizer = tokenizer
|
459 |
-
self.max_length = max_length
|
460 |
-
self.num_workers = num_workers
|
461 |
-
|
462 |
-
def train_dataloader(self):
|
463 |
-
return DataLoader(
|
464 |
-
self.train_dataset,
|
465 |
-
batch_size=self.batch_size,
|
466 |
-
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
|
467 |
-
num_workers=self.num_workers,
|
468 |
-
persistent_workers=True,
|
469 |
-
)
|
470 |
-
|
471 |
-
def val_dataloader(self):
|
472 |
-
return DataLoader(
|
473 |
-
self.val_dataset,
|
474 |
-
batch_size=self.batch_size,
|
475 |
-
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
|
476 |
-
num_workers=self.num_workers,
|
477 |
-
persistent_workers=True,
|
478 |
-
)
|
479 |
-
|
480 |
-
|
481 |
-
if __name__ == "__main__":
|
482 |
-
from tqdm import tqdm
|
483 |
-
|
484 |
-
ds = AutoTextSemanticInstructionDataset(
|
485 |
-
["data/protos"],
|
486 |
-
tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"),
|
487 |
-
use_speaker=False,
|
488 |
-
interactive_prob=1.0,
|
489 |
-
skip_text_prob=0.5,
|
490 |
-
)
|
491 |
-
|
492 |
-
for i in ds:
|
493 |
-
print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False))
|
494 |
-
# i["labels"][0][i["labels"][0] == -100] = 0
|
495 |
-
# print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False))
|
496 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/datasets/vqgan.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from pathlib import Path
|
3 |
-
from typing import Optional
|
4 |
-
|
5 |
-
import librosa
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
from lightning import LightningDataModule
|
9 |
-
from torch.utils.data import DataLoader, Dataset
|
10 |
-
|
11 |
-
from fish_speech.utils import RankedLogger
|
12 |
-
|
13 |
-
logger = RankedLogger(__name__, rank_zero_only=False)
|
14 |
-
|
15 |
-
|
16 |
-
class VQGANDataset(Dataset):
|
17 |
-
def __init__(
|
18 |
-
self,
|
19 |
-
filelist: str,
|
20 |
-
sample_rate: int = 32000,
|
21 |
-
hop_length: int = 640,
|
22 |
-
slice_frames: Optional[int] = None,
|
23 |
-
):
|
24 |
-
super().__init__()
|
25 |
-
|
26 |
-
filelist = Path(filelist)
|
27 |
-
root = filelist.parent
|
28 |
-
|
29 |
-
self.files = [
|
30 |
-
root / line.strip()
|
31 |
-
for line in filelist.read_text(encoding="utf-8").splitlines()
|
32 |
-
if line.strip()
|
33 |
-
]
|
34 |
-
self.sample_rate = sample_rate
|
35 |
-
self.hop_length = hop_length
|
36 |
-
self.slice_frames = slice_frames
|
37 |
-
|
38 |
-
def __len__(self):
|
39 |
-
return len(self.files)
|
40 |
-
|
41 |
-
def get_item(self, idx):
|
42 |
-
file = self.files[idx]
|
43 |
-
|
44 |
-
audio, _ = librosa.load(file, sr=self.sample_rate, mono=True)
|
45 |
-
|
46 |
-
# Slice audio and features
|
47 |
-
if (
|
48 |
-
self.slice_frames is not None
|
49 |
-
and audio.shape[0] > self.slice_frames * self.hop_length
|
50 |
-
):
|
51 |
-
start = np.random.randint(
|
52 |
-
0, audio.shape[0] - self.slice_frames * self.hop_length
|
53 |
-
)
|
54 |
-
audio = audio[start : start + self.slice_frames * self.hop_length]
|
55 |
-
|
56 |
-
if len(audio) == 0:
|
57 |
-
return None
|
58 |
-
|
59 |
-
max_value = np.abs(audio).max()
|
60 |
-
if max_value > 1.0:
|
61 |
-
audio = audio / max_value
|
62 |
-
|
63 |
-
return {
|
64 |
-
"audio": torch.from_numpy(audio),
|
65 |
-
}
|
66 |
-
|
67 |
-
def __getitem__(self, idx):
|
68 |
-
try:
|
69 |
-
return self.get_item(idx)
|
70 |
-
except Exception as e:
|
71 |
-
import traceback
|
72 |
-
|
73 |
-
traceback.print_exc()
|
74 |
-
logger.error(f"Error loading {self.files[idx]}: {e}")
|
75 |
-
return None
|
76 |
-
|
77 |
-
|
78 |
-
@dataclass
|
79 |
-
class VQGANCollator:
|
80 |
-
def __call__(self, batch):
|
81 |
-
batch = [x for x in batch if x is not None]
|
82 |
-
|
83 |
-
audio_lengths = torch.tensor([len(x["audio"]) for x in batch])
|
84 |
-
audio_maxlen = audio_lengths.max()
|
85 |
-
|
86 |
-
# Rounds up to nearest multiple of 2 (audio_lengths)
|
87 |
-
audios = []
|
88 |
-
for x in batch:
|
89 |
-
audios.append(
|
90 |
-
torch.nn.functional.pad(x["audio"], (0, audio_maxlen - len(x["audio"])))
|
91 |
-
)
|
92 |
-
|
93 |
-
return {
|
94 |
-
"audios": torch.stack(audios),
|
95 |
-
"audio_lengths": audio_lengths,
|
96 |
-
}
|
97 |
-
|
98 |
-
|
99 |
-
class VQGANDataModule(LightningDataModule):
|
100 |
-
def __init__(
|
101 |
-
self,
|
102 |
-
train_dataset: VQGANDataset,
|
103 |
-
val_dataset: VQGANDataset,
|
104 |
-
batch_size: int = 32,
|
105 |
-
num_workers: int = 4,
|
106 |
-
val_batch_size: Optional[int] = None,
|
107 |
-
):
|
108 |
-
super().__init__()
|
109 |
-
|
110 |
-
self.train_dataset = train_dataset
|
111 |
-
self.val_dataset = val_dataset
|
112 |
-
self.batch_size = batch_size
|
113 |
-
self.val_batch_size = val_batch_size or batch_size
|
114 |
-
self.num_workers = num_workers
|
115 |
-
|
116 |
-
def train_dataloader(self):
|
117 |
-
return DataLoader(
|
118 |
-
self.train_dataset,
|
119 |
-
batch_size=self.batch_size,
|
120 |
-
collate_fn=VQGANCollator(),
|
121 |
-
num_workers=self.num_workers,
|
122 |
-
shuffle=True,
|
123 |
-
persistent_workers=True,
|
124 |
-
)
|
125 |
-
|
126 |
-
def val_dataloader(self):
|
127 |
-
return DataLoader(
|
128 |
-
self.val_dataset,
|
129 |
-
batch_size=self.val_batch_size,
|
130 |
-
collate_fn=VQGANCollator(),
|
131 |
-
num_workers=self.num_workers,
|
132 |
-
persistent_workers=True,
|
133 |
-
)
|
134 |
-
|
135 |
-
|
136 |
-
if __name__ == "__main__":
|
137 |
-
dataset = VQGANDataset("data/LibriTTS_R/vq_train_filelist.txt")
|
138 |
-
dataloader = DataLoader(
|
139 |
-
dataset, batch_size=4, shuffle=False, collate_fn=VQGANCollator()
|
140 |
-
)
|
141 |
-
|
142 |
-
for batch in dataloader:
|
143 |
-
print(batch["audios"].shape)
|
144 |
-
print(batch["features"].shape)
|
145 |
-
print(batch["audio_lengths"])
|
146 |
-
print(batch["feature_lengths"])
|
147 |
-
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/README.md
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
## i18n Folder Attribution
|
2 |
-
|
3 |
-
The `i18n` folder within the `fish_speech` directory contains files initially sourced from the RVC project. In compliance with the MIT license under which these files were released, we acknowledge the original authors and sources below:
|
4 |
-
|
5 |
-
### fish_speech/i18n/core.py
|
6 |
-
|
7 |
-
**Related code from RVC:**
|
8 |
-
[https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/83d6a64e675d9bbd6e92ee450c5f807ed2bb54d8/i18n/i18n.py](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/83d6a64e675d9bbd6e92ee450c5f807ed2bb54d8/i18n/i18n.py)
|
9 |
-
|
10 |
-
**Initial commit:**
|
11 |
-
add localization(添加本地化) [RVC-Project/Retrieval-based-Voice-Conversion-WebUI#35](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/pull/35)
|
12 |
-
|
13 |
-
**Initial author:**
|
14 |
-
[@L4Ph](https://github.com/L4Ph)
|
15 |
-
|
16 |
-
### fish_speech/i18n/scan.py
|
17 |
-
|
18 |
-
**Related code from RVC:**
|
19 |
-
[https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/83d6a64e675d9bbd6e92ee450c5f807ed2bb54d8/i18n/scan_i18n.py](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/83d6a64e675d9bbd6e92ee450c5f807ed2bb54d8/i18n/scan_i18n.py)
|
20 |
-
|
21 |
-
**Initial commit:**
|
22 |
-
File for detecting i18n missing keys [RVC-Project/Retrieval-based-Voice-Conversion-WebUI#1058](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/pull/1058)
|
23 |
-
|
24 |
-
**Initial author:**
|
25 |
-
[@towzeur](https://github.com/towzeur)
|
26 |
-
|
27 |
-
We appreciate the contributions of the RVC project and its authors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/__init__.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
from .core import i18n
|
2 |
-
|
3 |
-
__all__ = ["i18n"]
|
|
|
|
|
|
|
|
fish_speech/i18n/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (218 Bytes)
|
|
fish_speech/i18n/__pycache__/core.cpython-310.pyc
DELETED
Binary file (1.44 kB)
|
|
fish_speech/i18n/core.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import locale
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
I18N_FILE_PATH = Path(__file__).parent / "locale"
|
6 |
-
DEFAULT_LANGUAGE = "en_US"
|
7 |
-
|
8 |
-
|
9 |
-
def load_language_list(language):
|
10 |
-
with open(I18N_FILE_PATH / f"{language}.json", "r", encoding="utf-8") as f:
|
11 |
-
language_list = json.load(f)
|
12 |
-
|
13 |
-
return language_list
|
14 |
-
|
15 |
-
|
16 |
-
class I18nAuto:
|
17 |
-
def __init__(self):
|
18 |
-
i18n_file = Path(".locale")
|
19 |
-
|
20 |
-
if i18n_file.exists():
|
21 |
-
with open(i18n_file, "r", encoding="utf-8") as f:
|
22 |
-
language = f.read().strip()
|
23 |
-
else:
|
24 |
-
# getlocale can't identify the system's language ((None, None))
|
25 |
-
language = locale.getdefaultlocale()[0]
|
26 |
-
|
27 |
-
if (I18N_FILE_PATH / f"{language}.json").exists() is False:
|
28 |
-
language = DEFAULT_LANGUAGE
|
29 |
-
|
30 |
-
self.language = language
|
31 |
-
self.language_map = load_language_list(language)
|
32 |
-
|
33 |
-
def __call__(self, key):
|
34 |
-
return self.language_map.get(key, key)
|
35 |
-
|
36 |
-
def __repr__(self):
|
37 |
-
return "Use Language: " + self.language
|
38 |
-
|
39 |
-
|
40 |
-
i18n = I18nAuto()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/locale/en_US.json
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"16-mixed is recommended for 10+ series GPU": "16-mixed is recommended for 10+ series GPU",
|
3 |
-
"5 to 10 seconds of reference audio, useful for specifying speaker.": "5 to 10 seconds of reference audio, useful for specifying speaker.",
|
4 |
-
"A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).": "A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).",
|
5 |
-
"Accumulate Gradient Batches": "Accumulate Gradient Batches",
|
6 |
-
"Add to Processing Area": "Add to Processing Area",
|
7 |
-
"Added path successfully!": "Added path successfully!",
|
8 |
-
"Advanced Config": "Advanced Config",
|
9 |
-
"Base LLAMA Model": "Base LLAMA Model",
|
10 |
-
"Batch Inference": "Batch Inference",
|
11 |
-
"Batch Size": "Batch Size",
|
12 |
-
"Changing with the Model Path": "Changing with the Model Path",
|
13 |
-
"Chinese": "Chinese",
|
14 |
-
"Compile Model": "Compile Model",
|
15 |
-
"Compile the model can significantly reduce the inference time, but will increase cold start time": "Compile the model can significantly reduce the inference time, but will increase cold start time",
|
16 |
-
"Copy": "Copy",
|
17 |
-
"Data Preprocessing": "Data Preprocessing",
|
18 |
-
"Data Preprocessing Path": "Data Preprocessing Path",
|
19 |
-
"Data Source": "Data Source",
|
20 |
-
"Decoder Model Config": "Decoder Model Config",
|
21 |
-
"Decoder Model Path": "Decoder Model Path",
|
22 |
-
"Disabled": "Disabled",
|
23 |
-
"Enable Reference Audio": "Enable Reference Audio",
|
24 |
-
"English": "English",
|
25 |
-
"Error Message": "Error Message",
|
26 |
-
"File Preprocessing": "File Preprocessing",
|
27 |
-
"Generate": "Generate",
|
28 |
-
"Generated Audio": "Generated Audio",
|
29 |
-
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format": "If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format",
|
30 |
-
"Infer interface is closed": "Infer interface is closed",
|
31 |
-
"Inference Configuration": "Inference Configuration",
|
32 |
-
"Inference Server Configuration": "Inference Server Configuration",
|
33 |
-
"Inference Server Error": "Inference Server Error",
|
34 |
-
"Inferring interface is launched at {}": "Inferring interface is launched at {}",
|
35 |
-
"Initial Learning Rate": "Initial Learning Rate",
|
36 |
-
"Input Audio & Source Path for Transcription": "Input Audio & Source Path for Transcription",
|
37 |
-
"Input Text": "Input Text",
|
38 |
-
"Invalid path: {}": "Invalid path: {}",
|
39 |
-
"It is recommended to use CUDA, if you have low configuration, use CPU": "It is recommended to use CUDA, if you have low configuration, use CPU",
|
40 |
-
"Iterative Prompt Length, 0 means off": "Iterative Prompt Length, 0 means off",
|
41 |
-
"Japanese": "Japanese",
|
42 |
-
"LLAMA Configuration": "LLAMA Configuration",
|
43 |
-
"LLAMA Model Config": "LLAMA Model Config",
|
44 |
-
"LLAMA Model Path": "LLAMA Model Path",
|
45 |
-
"Labeling Device": "Labeling Device",
|
46 |
-
"LoRA Model to be merged": "LoRA Model to be merged",
|
47 |
-
"Maximum Audio Duration": "Maximum Audio Duration",
|
48 |
-
"Maximum Length per Sample": "Maximum Length per Sample",
|
49 |
-
"Maximum Training Steps": "Maximum Training Steps",
|
50 |
-
"Maximum tokens per batch, 0 means no limit": "Maximum tokens per batch, 0 means no limit",
|
51 |
-
"Merge": "Merge",
|
52 |
-
"Merge LoRA": "Merge LoRA",
|
53 |
-
"Merge successfully": "Merge successfully",
|
54 |
-
"Minimum Audio Duration": "Minimum Audio Duration",
|
55 |
-
"Model Output Path": "Model Output Path",
|
56 |
-
"Model Size": "Model Size",
|
57 |
-
"Move": "Move",
|
58 |
-
"Move files successfully": "Move files successfully",
|
59 |
-
"No audio generated, please check the input text.": "No audio generated, please check the input text.",
|
60 |
-
"No selected options": "No selected options",
|
61 |
-
"Number of Workers": "Number of Workers",
|
62 |
-
"Open Inference Server": "Open Inference Server",
|
63 |
-
"Open Labeler WebUI": "Open Labeler WebUI",
|
64 |
-
"Open Tensorboard": "Open Tensorboard",
|
65 |
-
"Opened labeler in browser": "Opened labeler in browser",
|
66 |
-
"Optional Label Language": "Optional Label Language",
|
67 |
-
"Optional online ver": "Optional online ver",
|
68 |
-
"Output Path": "Output Path",
|
69 |
-
"Path error, please check the model file exists in the corresponding path": "Path error, please check the model file exists in the corresponding path",
|
70 |
-
"Precision": "Precision",
|
71 |
-
"Probability of applying Speaker Condition": "Probability of applying Speaker Condition",
|
72 |
-
"Put your text here.": "Put your text here.",
|
73 |
-
"Reference Audio": "Reference Audio",
|
74 |
-
"Reference Text": "Reference Text",
|
75 |
-
"Related code and weights are released under CC BY-NC-SA 4.0 License.": "Related code and weights are released under CC BY-NC-SA 4.0 License.",
|
76 |
-
"Remove Selected Data": "Remove Selected Data",
|
77 |
-
"Removed path successfully!": "Removed path successfully!",
|
78 |
-
"Repetition Penalty": "Repetition Penalty",
|
79 |
-
"Save model every n steps": "Save model every n steps",
|
80 |
-
"Select LLAMA ckpt": "Select LLAMA ckpt",
|
81 |
-
"Select VITS ckpt": "Select VITS ckpt",
|
82 |
-
"Select VQGAN ckpt": "Select VQGAN ckpt",
|
83 |
-
"Select source file processing method": "Select source file processing method",
|
84 |
-
"Select the model to be trained (Depending on the Tab page you are on)": "Select the model to be trained (Depending on the Tab page you are on)",
|
85 |
-
"Selected: {}": "Selected: {}",
|
86 |
-
"Speaker": "Speaker",
|
87 |
-
"Speaker is identified by the folder name": "Speaker is identified by the folder name",
|
88 |
-
"Start Training": "Start Training",
|
89 |
-
"Streaming Audio": "Streaming Audio",
|
90 |
-
"Streaming Generate": "Streaming Generate",
|
91 |
-
"Tensorboard Host": "Tensorboard Host",
|
92 |
-
"Tensorboard Log Path": "Tensorboard Log Path",
|
93 |
-
"Tensorboard Port": "Tensorboard Port",
|
94 |
-
"Tensorboard interface is closed": "Tensorboard interface is closed",
|
95 |
-
"Tensorboard interface is launched at {}": "Tensorboard interface is launched at {}",
|
96 |
-
"Text is too long, please keep it under {} characters.": "Text is too long, please keep it under {} characters.",
|
97 |
-
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.": "The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.",
|
98 |
-
"Training Configuration": "Training Configuration",
|
99 |
-
"Training Error": "Training Error",
|
100 |
-
"Training stopped": "Training stopped",
|
101 |
-
"Type name of the speaker": "Type name of the speaker",
|
102 |
-
"Type the path or select from the dropdown": "Type the path or select from the dropdown",
|
103 |
-
"Use LoRA": "Use LoRA",
|
104 |
-
"Use LoRA can save GPU memory, but may reduce the quality of the model": "Use LoRA can save GPU memory, but may reduce the quality of the model",
|
105 |
-
"Use filelist": "Use filelist",
|
106 |
-
"Use large for 10G+ GPU, medium for 5G, small for 2G": "Use large for 10G+ GPU, medium for 5G, small for 2G",
|
107 |
-
"VITS Configuration": "VITS Configuration",
|
108 |
-
"VQGAN Configuration": "VQGAN Configuration",
|
109 |
-
"Validation Batch Size": "Validation Batch Size",
|
110 |
-
"View the status of the preprocessing folder (use the slider to control the depth of the tree)": "View the status of the preprocessing folder (use the slider to control the depth of the tree)",
|
111 |
-
"We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.": "We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.",
|
112 |
-
"WebUI Host": "WebUI Host",
|
113 |
-
"WebUI Port": "WebUI Port",
|
114 |
-
"Whisper Model": "Whisper Model",
|
115 |
-
"You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).": "You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).",
|
116 |
-
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU": "bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU",
|
117 |
-
"latest": "latest",
|
118 |
-
"new": "new",
|
119 |
-
"Realtime Transform Text": "Realtime Transform Text",
|
120 |
-
"Normalization Result Preview (Currently Only Chinese)": "Normalization Result Preview (Currently Only Chinese)",
|
121 |
-
"Text Normalization": "Text Normalization"
|
122 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/locale/es_ES.json
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"16-mixed is recommended for 10+ series GPU": "se recomienda 16-mixed para GPU de la serie 10+",
|
3 |
-
"5 to 10 seconds of reference audio, useful for specifying speaker.": "5 a 10 segundos de audio de referencia, útil para especificar el hablante.",
|
4 |
-
"A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).": "Un modelo de texto a voz basado en VQ-GAN y Llama desarrollado por [Fish Audio](https://fish.audio).",
|
5 |
-
"Accumulate Gradient Batches": "Acumular lotes de gradientes",
|
6 |
-
"Add to Processing Area": "Agregar al Área de Procesamiento",
|
7 |
-
"Added path successfully!": "¡Ruta agregada exitosamente!",
|
8 |
-
"Advanced Config": "Configuración Avanzada",
|
9 |
-
"Base LLAMA Model": "Modelo Base LLAMA",
|
10 |
-
"Batch Inference": "Inferencia por Lote",
|
11 |
-
"Batch Size": "Tamaño del Lote",
|
12 |
-
"Changing with the Model Path": "Cambiando con la Ruta del Modelo",
|
13 |
-
"Chinese": "Chino",
|
14 |
-
"Compile Model": "Compilar Modelo",
|
15 |
-
"Compile the model can significantly reduce the inference time, but will increase cold start time": "Compilar el modelo puede reducir significativamente el tiempo de inferencia, pero aumentará el tiempo de inicio en frío",
|
16 |
-
"Copy": "Copiar",
|
17 |
-
"Data Preprocessing": "Preprocesamiento de Datos",
|
18 |
-
"Data Preprocessing Path": "Ruta de Preprocesamiento de Datos",
|
19 |
-
"Data Source": "Fuente de Datos",
|
20 |
-
"Decoder Model Config": "Configuración del modelo decodificador",
|
21 |
-
"Decoder Model Path": "Ruta del modelo decodificador",
|
22 |
-
"Disabled": "Desactivado",
|
23 |
-
"Enable Reference Audio": "Habilitar Audio de Referencia",
|
24 |
-
"English": "Inglés",
|
25 |
-
"Error Message": "Mensaje de Error",
|
26 |
-
"File Preprocessing": "Preprocesamiento de Archivos",
|
27 |
-
"Generate": "Generar",
|
28 |
-
"Generated Audio": "Audio Generado",
|
29 |
-
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format": "Si no hay texto correspondiente para el audio, aplique ASR para asistencia, soporte para formato .txt o .lab",
|
30 |
-
"Infer interface is closed": "La interfaz de inferencia está cerrada",
|
31 |
-
"Inference Configuration": "Configuración de Inferencia",
|
32 |
-
"Inference Server Configuration": "Configuración del Servidor de Inferencia",
|
33 |
-
"Inference Server Error": "Error del Servidor de Inferencia",
|
34 |
-
"Inferring interface is launched at {}": "La interfaz de inferencia se ha lanzado en {}",
|
35 |
-
"Initial Learning Rate": "Tasa de Aprendizaje Inicial",
|
36 |
-
"Input Audio & Source Path for Transcription": "Audio de Entrada y Ruta de Origen para Transcripción",
|
37 |
-
"Input Text": "Texto de Entrada",
|
38 |
-
"Invalid path: {}": "Ruta inválida: {}",
|
39 |
-
"It is recommended to use CUDA, if you have low configuration, use CPU": "Se recomienda usar CUDA, si tiene una configuración baja, use CPU",
|
40 |
-
"Iterative Prompt Length, 0 means off": "Longitud de la Indicación Iterativa, 0 significa apagado",
|
41 |
-
"Japanese": "Japonés",
|
42 |
-
"LLAMA Configuration": "Configuración de LLAMA",
|
43 |
-
"LLAMA Model Config": "Configuración del Modelo LLAMA",
|
44 |
-
"LLAMA Model Path": "Ruta del Modelo LLAMA",
|
45 |
-
"Labeling Device": "Dispositivo de Etiquetado",
|
46 |
-
"LoRA Model to be merged": "Modelo LoRA a fusionar",
|
47 |
-
"Maximum Audio Duration": "Duración máxima de audio",
|
48 |
-
"Maximum Length per Sample": "Longitud Máxima por Muestra",
|
49 |
-
"Maximum Training Steps": "Pasos Máximos de Entrenamiento",
|
50 |
-
"Maximum tokens per batch, 0 means no limit": "Máximo de tokens por lote, 0 significa sin límite",
|
51 |
-
"Merge": "Fusionar",
|
52 |
-
"Merge LoRA": "Fusionar LoRA",
|
53 |
-
"Merge successfully": "Fusionado exitosamente",
|
54 |
-
"Minimum Audio Duration": "Duración mínima de audio",
|
55 |
-
"Model Output Path": "Ruta de Salida del Modelo",
|
56 |
-
"Model Size": "Tamaño del Modelo",
|
57 |
-
"Move": "Mover",
|
58 |
-
"Move files successfully": "Archivos movidos exitosamente",
|
59 |
-
"No audio generated, please check the input text.": "No se generó audio, por favor verifique el texto de entrada.",
|
60 |
-
"No selected options": "No hay opciones seleccionadas",
|
61 |
-
"Number of Workers": "Número de Trabajadores",
|
62 |
-
"Open Inference Server": "Abrir Servidor de Inferencia",
|
63 |
-
"Open Labeler WebUI": "Abrir Interfaz Web del Etiquetador",
|
64 |
-
"Open Tensorboard": "Abrir Tensorboard",
|
65 |
-
"Opened labeler in browser": "Se abrió el etiquetador en el navegador",
|
66 |
-
"Optional Label Language": "Idioma de Etiquetado Opcional",
|
67 |
-
"Optional online ver": "Ver en línea opcional",
|
68 |
-
"Output Path": "Ruta de Salida",
|
69 |
-
"Path error, please check the model file exists in the corresponding path": "Error de ruta, por favor verifique que el archivo del modelo exista en la ruta correspondiente",
|
70 |
-
"Precision": "Precisión",
|
71 |
-
"Probability of applying Speaker Condition": "Probabilidad de aplicar Condición de Hablante",
|
72 |
-
"Put your text here.": "Ponga su texto aquí.",
|
73 |
-
"Reference Audio": "Audio de Referencia",
|
74 |
-
"Reference Text": "Texto de Referencia",
|
75 |
-
"Related code and weights are released under CC BY-NC-SA 4.0 License.": "El código relacionado y los pesos se publican bajo la Licencia CC BY-NC-SA 4.0.",
|
76 |
-
"Remove Selected Data": "Eliminar Datos Seleccionados",
|
77 |
-
"Removed path successfully!": "¡Ruta eliminada exitosamente!",
|
78 |
-
"Repetition Penalty": "Penalización por Repetición",
|
79 |
-
"Save model every n steps": "Guardar modelo cada n pasos",
|
80 |
-
"Select LLAMA ckpt": "Seleccionar punto de control LLAMA",
|
81 |
-
"Select VITS ckpt": "Seleccionar punto de control VITS",
|
82 |
-
"Select VQGAN ckpt": "Seleccionar punto de control VQGAN",
|
83 |
-
"Select source file processing method": "Seleccione el método de procesamiento de archivos fuente",
|
84 |
-
"Select the model to be trained (Depending on the Tab page you are on)": "Seleccione el modelo a entrenar (Dependiendo de la pestaña en la que se encuentre)",
|
85 |
-
"Selected: {}": "Seleccionado: {}",
|
86 |
-
"Speaker": "Hablante",
|
87 |
-
"Speaker is identified by the folder name": "El hablante se identifica por el nombre de la carpeta",
|
88 |
-
"Start Training": "Iniciar Entrenamiento",
|
89 |
-
"Streaming Audio": "transmisión de audio",
|
90 |
-
"Streaming Generate": "síntesis en flujo",
|
91 |
-
"Tensorboard Host": "Host de Tensorboard",
|
92 |
-
"Tensorboard Log Path": "Ruta de Registro de Tensorboard",
|
93 |
-
"Tensorboard Port": "Puerto de Tensorboard",
|
94 |
-
"Tensorboard interface is closed": "La interfaz de Tensorboard está cerrada",
|
95 |
-
"Tensorboard interface is launched at {}": "La interfaz de Tensorboard se ha lanzado en {}",
|
96 |
-
"Text is too long, please keep it under {} characters.": "El texto es demasiado largo, por favor manténgalo por debajo de {} caracteres.",
|
97 |
-
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.": "La ruta de la carpeta de entrada a la izquierda o la lista de archivos. Ya sea que esté marcado o no, se utilizará para el entrenamiento posterior en esta lista.",
|
98 |
-
"Training Configuration": "Configuración de Entrenamiento",
|
99 |
-
"Training Error": "Error de Entrenamiento",
|
100 |
-
"Training stopped": "Entrenamiento detenido",
|
101 |
-
"Type name of the speaker": "Escriba el nombre del hablante",
|
102 |
-
"Type the path or select from the dropdown": "Escriba la ruta o seleccione de la lista desplegable",
|
103 |
-
"Use LoRA": "Usar LoRA",
|
104 |
-
"Use LoRA can save GPU memory, but may reduce the quality of the model": "Usar LoRA puede ahorrar memoria GPU, pero puede reducir la calidad del modelo",
|
105 |
-
"Use filelist": "Usar lista de archivos",
|
106 |
-
"Use large for 10G+ GPU, medium for 5G, small for 2G": "Use grande para GPU de 10G+, mediano para 5G, pequeño para 2G",
|
107 |
-
"VITS Configuration": "Configuración de VITS",
|
108 |
-
"VQGAN Configuration": "Configuración de VQGAN",
|
109 |
-
"Validation Batch Size": "Tamaño del Lote de Validación",
|
110 |
-
"View the status of the preprocessing folder (use the slider to control the depth of the tree)": "Vea el estado de la carpeta de preprocesamiento (use el control deslizante para controlar la profundidad del árbol)",
|
111 |
-
"We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.": "No somos responsables de ningún mal uso del modelo, por favor considere sus leyes y regulaciones locales antes de usarlo.",
|
112 |
-
"WebUI Host": "Host de WebUI",
|
113 |
-
"WebUI Port": "Puerto de WebUI",
|
114 |
-
"Whisper Model": "Modelo Whisper",
|
115 |
-
"You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).": "Puede encontrar el código fuente [aquí](https://github.com/fishaudio/fish-speech) y los modelos [aquí](https://huggingface.co/fishaudio/fish-speech-1).",
|
116 |
-
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU": "Se recomienda bf16-true para GPU de la serie 30+, se recomienda 16-mixed para GPU de la serie 10+",
|
117 |
-
"latest": "más reciente",
|
118 |
-
"new": "nuevo",
|
119 |
-
"Realtime Transform Text": "Transformación de Texto en Tiempo Real",
|
120 |
-
"Normalization Result Preview (Currently Only Chinese)": "Vista Previa del Resultado de Normalización (Actualmente Solo Chino)",
|
121 |
-
"Text Normalization": "Normalización de Texto"
|
122 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/locale/ja_JP.json
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"16-mixed is recommended for 10+ series GPU": "10シリーズ以降のGPUには16-mixedをお勧めします",
|
3 |
-
"5 to 10 seconds of reference audio, useful for specifying speaker.": "話者を指定するのに役立つ、5~10秒のリファレンスオーディオ。",
|
4 |
-
"A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).": "[Fish Audio](https://fish.audio)が開発したVQ-GANとLlamaに基づくテキスト音声合成モデル。",
|
5 |
-
"Accumulate Gradient Batches": "勾配バッチの累積",
|
6 |
-
"Add to Processing Area": "処理エリアに追加",
|
7 |
-
"Added path successfully!": "パスの追加に成功しました!",
|
8 |
-
"Advanced Config": "詳細設定",
|
9 |
-
"Base LLAMA Model": "基本LLAMAモデル",
|
10 |
-
"Batch Inference": "バッチ推論",
|
11 |
-
"Batch Size": "バッチサイズ",
|
12 |
-
"Changing with the Model Path": "モデルのパスに伴って変化する",
|
13 |
-
"Chinese": "中国語",
|
14 |
-
"Compile Model": "モデルのコンパイル",
|
15 |
-
"Compile the model can significantly reduce the inference time, but will increase cold start time": "モデルをコンパイルすると推論時間を大幅に短縮できますが、コールドスタート時間が長くなります",
|
16 |
-
"Copy": "コピー",
|
17 |
-
"Data Preprocessing": "データ前処理",
|
18 |
-
"Data Preprocessing Path": "データ前処理パス",
|
19 |
-
"Data Source": "データソース",
|
20 |
-
"Decoder Model Config": "デコーダーモデルの構成",
|
21 |
-
"Decoder Model Path": "デコーダーモデルのパス",
|
22 |
-
"Disabled": "無効",
|
23 |
-
"Enable Reference Audio": "リファレンスオーディオを有効にする",
|
24 |
-
"English": "英語",
|
25 |
-
"Error Message": "エラーメッセージ",
|
26 |
-
"File Preprocessing": "文書前处理",
|
27 |
-
"Generate": "生成",
|
28 |
-
"Generated Audio": "生成されたオーディオ",
|
29 |
-
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format": "音声に対応するテキストがない場合は、ASRを適用してサポートします。.txtまたは.lab形式をサポートしています",
|
30 |
-
"Infer interface is closed": "推論インターフェースが閉じられています",
|
31 |
-
"Inference Configuration": "推論設定",
|
32 |
-
"Inference Server Configuration": "推論サーバー設定",
|
33 |
-
"Inference Server Error": "推論サーバーエラー",
|
34 |
-
"Inferring interface is launched at {}": "推論インターフェースが{}で起動しました",
|
35 |
-
"Initial Learning Rate": "初期学習率",
|
36 |
-
"Input Audio & Source Path for Transcription": "入力オーディオと文字起こしのソースパス",
|
37 |
-
"Input Text": "入力テキスト",
|
38 |
-
"Invalid path: {}": "無効なパス: {}",
|
39 |
-
"It is recommended to use CUDA, if you have low configuration, use CPU": "CUDAの使用をお勧めします。低い構成の場合はCPUを使用してください",
|
40 |
-
"Iterative Prompt Length, 0 means off": "反復プロンプト長。0はオフを意味します",
|
41 |
-
"Japanese": "日本語",
|
42 |
-
"LLAMA Configuration": "LLAMA設定",
|
43 |
-
"LLAMA Model Config": "LLAMAモデル設定",
|
44 |
-
"LLAMA Model Path": "LLAMAモデルパス",
|
45 |
-
"Labeling Device": "ラベリングデバイス",
|
46 |
-
"LoRA Model to be merged": "マージするLoRAモデル",
|
47 |
-
"Maximum Audio Duration": "最大オーディオの長さ",
|
48 |
-
"Maximum Length per Sample": "サンプルあたりの最大長",
|
49 |
-
"Maximum Training Steps": "最大トレーニングステップ数",
|
50 |
-
"Maximum tokens per batch, 0 means no limit": "バッチあたりの最大トークン数。0は制限なしを意味します",
|
51 |
-
"Merge": "マージ",
|
52 |
-
"Merge LoRA": "LoRAのマージ",
|
53 |
-
"Merge successfully": "マージに成功しました",
|
54 |
-
"Minimum Audio Duration": "最小オーディオの長さ",
|
55 |
-
"Model Output Path": "モデル出力パス",
|
56 |
-
"Model Size": "モデルサイズ",
|
57 |
-
"Move": "移動",
|
58 |
-
"Move files successfully": "ファイルの移動に成功しました",
|
59 |
-
"No audio generated, please check the input text.": "オーディオが生成されていません。入力テキストを確認してください。",
|
60 |
-
"No selected options": "選択されたオプションはありません",
|
61 |
-
"Number of Workers": "ワーカー数",
|
62 |
-
"Open Inference Server": "推論サーバーを開く",
|
63 |
-
"Open Labeler WebUI": "ラベラーWebUIを開く",
|
64 |
-
"Open Tensorboard": "Tensorboardを開く",
|
65 |
-
"Opened labeler in browser": "ブラウザでラベラーを開きました",
|
66 |
-
"Optional Label Language": "オプションのラベル言語",
|
67 |
-
"Optional online ver": "オプションのオンラインバージョン",
|
68 |
-
"Output Path": "出力パス",
|
69 |
-
"Path error, please check the model file exists in the corresponding path": "パスエラー。対応するパスにモデルファイルが存在するか確認してください",
|
70 |
-
"Precision": "精度",
|
71 |
-
"Probability of applying Speaker Condition": "話者条件を適用する確率",
|
72 |
-
"Put your text here.": "ここにテキストを入力してください。",
|
73 |
-
"Reference Audio": "リファレンスオーディオ",
|
74 |
-
"Reference Text": "リファレンステキスト",
|
75 |
-
"Related code and weights are released under CC BY-NC-SA 4.0 License.": "関連コードと重みはCC BY-NC-SA 4.0ライセンスの下でリリースされます。",
|
76 |
-
"Remove Selected Data": "選択したデータを削除",
|
77 |
-
"Removed path successfully!": "パスの削除に成功しました!",
|
78 |
-
"Repetition Penalty": "反復ペナルティ",
|
79 |
-
"Save model every n steps": "nステップごとにモデルを保存",
|
80 |
-
"Select LLAMA ckpt": " LLAMA チェックポイントを選択",
|
81 |
-
"Select VITS ckpt": "VITS チェックポイントを選択",
|
82 |
-
"Select VQGAN ckpt": "VQGAN チェックポイントを選択",
|
83 |
-
"Select source file processing method": "ソースファイルの処理方法を選択",
|
84 |
-
"Select the model to be trained (Depending on the Tab page you are on)": "タブページに応じてトレーニングするモデルを選択してください",
|
85 |
-
"Selected: {}": "選択済み: {}",
|
86 |
-
"Speaker": "話者",
|
87 |
-
"Speaker is identified by the folder name": "話者はフォルダ名で識別されます",
|
88 |
-
"Start Training": "トレーニング開始",
|
89 |
-
"Streaming Audio": "ストリーミングオーディオ",
|
90 |
-
"Streaming Generate": "ストリーミング合成",
|
91 |
-
"Tensorboard Host": "Tensorboardホスト",
|
92 |
-
"Tensorboard Log Path": "Tensorboardログパス",
|
93 |
-
"Tensorboard Port": "Tensorboardポート",
|
94 |
-
"Tensorboard interface is closed": "Tensorboardインターフェースが閉じられています",
|
95 |
-
"Tensorboard interface is launched at {}": "Tensorboardインターフェースが{}で起動されました",
|
96 |
-
"Text is too long, please keep it under {} characters.": "テキストが長すぎます。{}文字以内に抑えてください。",
|
97 |
-
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.": "左側の入力フォルダまたはファイルリストのパス。チェックの有無にかかわらず、このリストの後続のトレーニングに使用されます。",
|
98 |
-
"Training Configuration": "トレーニング設定",
|
99 |
-
"Training Error": "トレーニングエラー",
|
100 |
-
"Training stopped": "トレーニングが停止しました",
|
101 |
-
"Type name of the speaker": "話者の名前を入力",
|
102 |
-
"Type the path or select from the dropdown": "パスを入力するか、ドロップダウンから選択してください",
|
103 |
-
"Use LoRA": "LoRAを使用",
|
104 |
-
"Use LoRA can save GPU memory, but may reduce the quality of the model": "LoRAを使用するとGPUメモリを節約できますが、モデルの品質が低下する可能性があります",
|
105 |
-
"Use filelist": "ファイルリストを使用",
|
106 |
-
"Use large for 10G+ GPU, medium for 5G, small for 2G": "10G以上のGPUには大、5Gには中、2Gには小を使用してください",
|
107 |
-
"VITS Configuration": "VITS の構成",
|
108 |
-
"VQGAN Configuration": "VQGAN の構成",
|
109 |
-
"Validation Batch Size": "検証バッチサイズ",
|
110 |
-
"View the status of the preprocessing folder (use the slider to control the depth of the tree)": "前処理フォルダの状態を表示(スライダーを使用してツリーの深さを制御)",
|
111 |
-
"We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.": "モデルの誤用については一切責任を負いません。使用する前に、現地の法律と規制を考慮してください。",
|
112 |
-
"WebUI Host": "WebUIホスト",
|
113 |
-
"WebUI Port": "WebUIポート",
|
114 |
-
"Whisper Model": "Whisperモデル",
|
115 |
-
"You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).": "ソースコードは[こちら](https://github.com/fishaudio/fish-speech)、モデルは[こちら](https://huggingface.co/fishaudio/fish-speech-1)にあります。",
|
116 |
-
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU": "30シリーズ以降のGPUにはbf16-trueを、10シリーズ以降のGPUには16-mixedをお勧めします",
|
117 |
-
"latest": "最新",
|
118 |
-
"new": "新規",
|
119 |
-
"Realtime Transform Text": "リアルタイム変換テキスト",
|
120 |
-
"Normalization Result Preview (Currently Only Chinese)": "正規化結果プレビュー(現在は中国語のみ)",
|
121 |
-
"Text Normalization": "テキスト正規化"
|
122 |
-
|
123 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/locale/pt_BR.json
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"5 to 10 seconds of reference audio, useful for specifying speaker.": "5 a 10 segundos de áudio de referência, útil para especificar o orador.",
|
3 |
-
"A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).": "Um modelo de texto para fala baseado em VQ-GAN e Llama desenvolvido por [Fish Audio](https://fish.audio).",
|
4 |
-
"Accumulate Gradient Batches": "Acumular Lotes de Gradiente",
|
5 |
-
"Add to Processing Area": "Adicionar à Área de Processamento",
|
6 |
-
"Added path successfully!": "Caminho adicionado com sucesso!",
|
7 |
-
"Advanced Config": "Configuração Avançada",
|
8 |
-
"Base LLAMA Model": "Modelo LLAMA Base",
|
9 |
-
"Batch Inference": "Inferência em Lote",
|
10 |
-
"Batch Size": "Tamanho do Lote",
|
11 |
-
"Changing with the Model Path": "Alterando com o Caminho do Modelo",
|
12 |
-
|
13 |
-
"Compile Model": "Compilar Modelo",
|
14 |
-
"Compile the model can significantly reduce the inference time, but will increase cold start time": "Compilar o modelo pode reduzir significativamente o tempo de inferência, mas aumentará a latência inicial",
|
15 |
-
"Copy": "Copiar",
|
16 |
-
"Data Preprocessing": "Pré-processamento de Dados",
|
17 |
-
"Data Preprocessing Path": "Caminho de Pré-processamento de Dados",
|
18 |
-
"Data Source": "Fonte de Dados",
|
19 |
-
"Decoder Model Config": "Configuração do Modelo Decodificador",
|
20 |
-
"Decoder Model Path": "Caminho do Modelo Decodificador",
|
21 |
-
"Disabled": "Desativado",
|
22 |
-
"Enable Initial Prompt": "Habilitar Prompt Inicial",
|
23 |
-
"Enable Reference Audio": "Habilitar Áudio de Referência",
|
24 |
-
"English": "Inglês",
|
25 |
-
"Japanese": "Japonês",
|
26 |
-
"Chinese": "Chinês",
|
27 |
-
"Portuguese": "Português",
|
28 |
-
"Spanish": "Espanhol",
|
29 |
-
"Error Message": "Mensagem de Erro",
|
30 |
-
"Faster Whisper, Up to 5g GPU memory usage": "Faster Whisper (Usa até 5 GB de vRAM)",
|
31 |
-
"File Preprocessing": "Pré-processamento de Arquivos",
|
32 |
-
"Generate": "Gerar",
|
33 |
-
"Generated Audio": "Áudio Gerado",
|
34 |
-
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format": "Se não houver texto correspondente ao áudio, utilize o ASR para assistência (formatos .txt ou .lab)",
|
35 |
-
"Infer interface is closed": "A interface de inferência foi fechada",
|
36 |
-
"Inference Configuration": "Configuração de Inferência",
|
37 |
-
"Inference Server Configuration": "Configuração do Servidor de Inferência",
|
38 |
-
"Inference Server Error": "Erro do Servidor de Inferência",
|
39 |
-
"Inferring interface is launched at {}": "A interface de inferência foi iniciada em {}",
|
40 |
-
"Initial Learning Rate": "Taxa de Aprendizagem Inicial",
|
41 |
-
"Initial Prompt": "Prompt Inicial",
|
42 |
-
"Initial prompt can provide contextual or vocabulary-specific guidance to the model.": "O prompt inicial pode fornecer orientação contextual ou específica de vocabulário para o modelo.",
|
43 |
-
"Input Audio & Source Path for Transcription": "Entrada de Áudio/Caminho de Origem para Transcrição",
|
44 |
-
"Input Text": "Texto de Entrada",
|
45 |
-
"Invalid path: {}": "Caminho inválido: {}",
|
46 |
-
"It is recommended to use CUDA, if you have low configuration, use CPU": "Para GPUs Nvidia é recomendado usar CUDA. Se não tiver uma GPU Nvidia, use CPU",
|
47 |
-
"Iterative Prompt Length, 0 means off": "Comprimento do Prompt Iterativo (0 = desativado)",
|
48 |
-
"LLAMA Configuration": "Configuração do LLAMA",
|
49 |
-
"LLAMA Model Config": "Configuração do Modelo LLAMA",
|
50 |
-
"LLAMA Model Path": "Caminho do Modelo LLAMA",
|
51 |
-
"Labeling Device": "Dispositivo de Rotulagem",
|
52 |
-
"LoRA Model to be merged": "Modelo LoRA para mesclagem",
|
53 |
-
"Maximum Length per Sample": "Comprimento Máximo por Amostra",
|
54 |
-
"Maximum Training Steps": "Etapas Máximas de Treinamento",
|
55 |
-
"Maximum tokens per batch, 0 means no limit": "Número máximo de tokens por lote, 0 significa sem limite",
|
56 |
-
"Merge": "Mesclar",
|
57 |
-
"Merge LoRA": "Mesclar LoRA",
|
58 |
-
"Merge successfully": "Mesclado com sucesso",
|
59 |
-
"Model Output Path": "Caminho de Saída do Modelo",
|
60 |
-
"Model Quantization": "Quantização do Modelo",
|
61 |
-
"Model Size": "Tamanho do Modelo",
|
62 |
-
"Move": "Mover",
|
63 |
-
"Move files successfully": "Arquivos movidos com sucesso",
|
64 |
-
"No audio generated, please check the input text.": "Nenhum áudio gerado, verifique o texto de entrada.",
|
65 |
-
"No selected options": "Nenhuma opção selecionada",
|
66 |
-
"Normalization Result Preview (Currently Only Chinese)": "Pré-visualização do Resultado da Normalização (Atualmente Apenas Chinês)",
|
67 |
-
"Number of Workers": "Número de Processos",
|
68 |
-
"Open Inference Server": "Abrir Servidor de Inferência",
|
69 |
-
"Open Labeler WebUI": "Abrir WebUI de Rotulagem",
|
70 |
-
"Open Tensorboard": "Abrir Tensorboard",
|
71 |
-
"Opened labeler in browser": "WebUI de rotulagem aberta no navegador",
|
72 |
-
"Optional Label Language": "Idioma do Rótulo (Opcional)",
|
73 |
-
"Optional online ver": "Versão online (opcional)",
|
74 |
-
"Output Path": "Caminho de Saída",
|
75 |
-
"Path error, please check the model file exists in the corresponding path": "Erro de caminho, verifique se o arquivo do modelo existe no caminho correspondente",
|
76 |
-
"Post-quantification Precision": "Precisão Pós-quantização",
|
77 |
-
"Precision": "Precisão",
|
78 |
-
"Probability of applying Speaker Condition": "Probabilidade de Aplicar Condição de Orador",
|
79 |
-
"Put your text here.": "Insira seu texto aqui.",
|
80 |
-
"Quantify": "Quantizar",
|
81 |
-
"Quantify successfully": "Quantizado com sucesso",
|
82 |
-
"Realtime Transform Text": "Transformar Texto em Tempo Real",
|
83 |
-
"Reference Audio": "Áudio de Referência",
|
84 |
-
"Reference Text": "Texto de Referência",
|
85 |
-
"warning": "Aviso",
|
86 |
-
"Pre-processing begins...": "O pré-processamento começou!",
|
87 |
-
"Related code and weights are released under CC BY-NC-SA 4.0 License.": "O código relacionado e os pesos são licenciados sob a Licença CC BY-NC-SA 4.0.",
|
88 |
-
"Remove Selected Data": "Remover Dados Selecionados",
|
89 |
-
"Removed path successfully!": "Caminho removido com sucesso!",
|
90 |
-
"Repetition Penalty": "Penalidade de Repetição",
|
91 |
-
"Save model every n steps": "Salvar modelo a cada n etapas",
|
92 |
-
"Select LLAMA ckpt": "Selecionar .ckpt do LLAMA",
|
93 |
-
"Select source file processing method": "Escolha como processar o arquivo de origem",
|
94 |
-
"Select the model to be trained (Depending on the Tab page you are on)": "Selecione o modelo para o treinamento (dependendo da aba em que você está)",
|
95 |
-
"Selected: {}": "Selecionado: {}",
|
96 |
-
"Speaker is identified by the folder name": "O orador é identificado pelo nome da pasta",
|
97 |
-
"Start Training": "Iniciar Treinamento",
|
98 |
-
"Streaming Audio": "Áudio em Streaming",
|
99 |
-
"Streaming Generate": "Geração em Streaming",
|
100 |
-
"Tensorboard Host": "Host do Tensorboard",
|
101 |
-
"Tensorboard Log Path": "Caminho de Log do Tensorboard",
|
102 |
-
"Tensorboard Port": "Porta do Tensorboard",
|
103 |
-
"Tensorboard interface is closed": "A interface do Tensorboard está fechada",
|
104 |
-
"Tensorboard interface is launched at {}": "A interface do Tensorboard foi iniciada em {}",
|
105 |
-
"Text Normalization": "Normalização de Texto",
|
106 |
-
"Text is too long, please keep it under {} characters.": "O texto é muito longo. Mantenha-o com menos de {} caracteres.",
|
107 |
-
"The lower the quantitative precision, the more the effectiveness may decrease, but the greater the efficiency will increase": "Quanto menor a precisão quantitativa, mais a eficácia pode diminuir, mas maior será o aumento da eficiência",
|
108 |
-
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.": "O caminho da pasta de entrada à esquerda ou a lista de arquivos. Independentemente de estar marcada ou não, ela será utilizada para o treinamento subsequente nesta lista.",
|
109 |
-
"Training Configuration": "Configuração de Treinamento",
|
110 |
-
"Training Error": "Erro de Treinamento",
|
111 |
-
"Training stopped": "Treinamento interrompido!",
|
112 |
-
"Type the path or select from the dropdown": "Digite o caminho ou selecione no menu suspenso",
|
113 |
-
"Use LoRA": "Usar LoRA",
|
114 |
-
"Use LoRA can save GPU memory, but may reduce the quality of the model": "O uso de LoRAs pode economizar memória da GPU, mas também pode reduzir a qualidade",
|
115 |
-
"Use filelist": "Usar lista de arquivos",
|
116 |
-
"VQGAN Configuration": "Configuração do VQGAN",
|
117 |
-
"View the status of the preprocessing folder (use the slider to control the depth of the tree)": "Visualizar o status da pasta de pré-processamento (use o controle deslizante para controlar a profundidade da árvore)",
|
118 |
-
"We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.": "Não nos responsabilizamos por qualquer uso indevido do modelo. Por favor, considere as leis e regulamentações locais antes de usá-lo.",
|
119 |
-
"WebUI Host": "Host da WebUI",
|
120 |
-
"WebUI Port": "Porta da WebUI",
|
121 |
-
"Whisper Model": "Modelo Whisper",
|
122 |
-
"You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).": "Você pode encontrar o código fonte [aqui](https://github.com/fishaudio/fish-speech) e os modelos [aqui](https://huggingface.co/fishaudio/fish-speech-1).",
|
123 |
-
"auto": "automático",
|
124 |
-
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU": "bf16-true é recomendado para GPUs da série 30+, 16-mixed é recomendado para GPUs da série 10+",
|
125 |
-
"latest": "mais recente",
|
126 |
-
"new": "novo",
|
127 |
-
"This audio introduces the basic concepts and applications of artificial intelligence and machine learning.": "Este áudio introduz os conceitos básicos e aplicações de inteligência artificial e aprendizado de máquina.",
|
128 |
-
"You don't need to train this model!": "Não é necessário treinar este modelo!",
|
129 |
-
"Yes": "Sim",
|
130 |
-
"No": "Não",
|
131 |
-
"version:": "versão:",
|
132 |
-
"author:": "autor:"
|
133 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/locale/zh_CN.json
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"16-mixed is recommended for 10+ series GPU": "10+ 系列 GPU 建议使用 16-mixed",
|
3 |
-
"5 to 10 seconds of reference audio, useful for specifying speaker.": "5 到 10 秒的参考音频,适用于指定音色。",
|
4 |
-
"A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).": "由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.",
|
5 |
-
"Accumulate Gradient Batches": "梯度累积批次",
|
6 |
-
"Add to Processing Area": "加入处理区",
|
7 |
-
"Added path successfully!": "添加路径成功!",
|
8 |
-
"Advanced Config": "高级参数",
|
9 |
-
"Base LLAMA Model": "基础 LLAMA 模型",
|
10 |
-
"Batch Inference": "批量推理",
|
11 |
-
"Batch Size": "批次大小",
|
12 |
-
"Changing with the Model Path": "随模型路径变化",
|
13 |
-
"Chinese": "中文",
|
14 |
-
"Compile Model": "编译模型",
|
15 |
-
"Compile the model can significantly reduce the inference time, but will increase cold start time": "编译模型可以显著减少推理时间,但会增加冷启动时间",
|
16 |
-
"Copy": "复制",
|
17 |
-
"Data Preprocessing": "数据预处理",
|
18 |
-
"Data Preprocessing Path": "数据预处理路径",
|
19 |
-
"Data Source": "数据源",
|
20 |
-
"Decoder Model Config": "解码器模型配置",
|
21 |
-
"Decoder Model Path": "解码器模型路径",
|
22 |
-
"Disabled": "禁用",
|
23 |
-
"Enable Reference Audio": "启用参考音频",
|
24 |
-
"English": "英文",
|
25 |
-
"Error Message": "错误信息",
|
26 |
-
"File Preprocessing": "文件预处理",
|
27 |
-
"Generate": "生成",
|
28 |
-
"Generated Audio": "音频",
|
29 |
-
"If there is no corresponding text for the audio, apply ASR for assistance, support .txt or .lab format": "如果音频没有对应的文本,可以应用 ASR 辅助,支持 .txt 或 .lab 格式",
|
30 |
-
"Infer interface is closed": "推理界面已关闭",
|
31 |
-
"Inference Configuration": "推理配置",
|
32 |
-
"Inference Server Configuration": "推理服务器配置",
|
33 |
-
"Inference Server Error": "推理服务器错误",
|
34 |
-
"Inferring interface is launched at {}": "推理界面已在 {} 上启动",
|
35 |
-
"Initial Learning Rate": "初始学习率",
|
36 |
-
"Input Audio & Source Path for Transcription": "输入音频和转录源路径",
|
37 |
-
"Input Text": "输入文本",
|
38 |
-
"Invalid path: {}": "无效路径: {}",
|
39 |
-
"It is recommended to use CUDA, if you have low configuration, use CPU": "建议使用 CUDA,如果配置较低,使用 CPU",
|
40 |
-
"Iterative Prompt Length, 0 means off": "迭代提示长度,0 表示关闭",
|
41 |
-
"Japanese": "日文",
|
42 |
-
"LLAMA Configuration": "LLAMA 配置",
|
43 |
-
"LLAMA Model Config": "LLAMA 模型配置",
|
44 |
-
"LLAMA Model Path": "LLAMA 模型路径",
|
45 |
-
"Labeling Device": "标注加速设备",
|
46 |
-
"LoRA Model to be merged": "要合并的 LoRA 模型",
|
47 |
-
"Maximum Audio Duration": "最大音频时长",
|
48 |
-
"Maximum Length per Sample": "每个样本的最大长度",
|
49 |
-
"Maximum Training Steps": "最大训练步数",
|
50 |
-
"Maximum tokens per batch, 0 means no limit": "每批最大令牌数,0 表示无限制",
|
51 |
-
"Merge": "合并",
|
52 |
-
"Merge LoRA": "合并 LoRA",
|
53 |
-
"Merge successfully": "合并成功",
|
54 |
-
"Minimum Audio Duration": "最小音频时长",
|
55 |
-
"Model Output Path": "模型输出路径",
|
56 |
-
"Model Size": "模型规模",
|
57 |
-
"Move": "移动",
|
58 |
-
"Move files successfully": "移动文件成功",
|
59 |
-
"No audio generated, please check the input text.": "没有生成音频,请检查输入文本.",
|
60 |
-
"No selected options": "没有选择的选项",
|
61 |
-
"Number of Workers": "数据加载进程数",
|
62 |
-
"Open Inference Server": "打开推理服务器",
|
63 |
-
"Open Labeler WebUI": "打开标注工具",
|
64 |
-
"Open Tensorboard": "打开 Tensorboard",
|
65 |
-
"Opened labeler in browser": "在浏览器中打开标注工具",
|
66 |
-
"Optional Label Language": "[可选] 标注语言",
|
67 |
-
"Optional online ver": "[可选] 使用在线版",
|
68 |
-
"Output Path": "输出路径",
|
69 |
-
"Path error, please check the model file exists in the corresponding path": "路径错误,请检查模型文件是否存在于相应路径",
|
70 |
-
"Precision": "精度",
|
71 |
-
"Probability of applying Speaker Condition": "应用说话人条件的概率",
|
72 |
-
"Put your text here.": "在此处输入文本.",
|
73 |
-
"Reference Audio": "参考音频",
|
74 |
-
"Reference Text": "参考文本",
|
75 |
-
"Related code and weights are released under CC BY-NC-SA 4.0 License.": "相关代码和权重使用 CC BY-NC-SA 4.0 许可证发布.",
|
76 |
-
"Remove Selected Data": "移除选中数据",
|
77 |
-
"Removed path successfully!": "移除路径成功!",
|
78 |
-
"Repetition Penalty": "重复惩罚",
|
79 |
-
"Save model every n steps": "每 n 步保存模型",
|
80 |
-
"Select LLAMA ckpt": "选择 LLAMA 检查点",
|
81 |
-
"Select VITS ckpt": "选择 VITS 检查点",
|
82 |
-
"Select VQGAN ckpt": "选择 VQGAN 检查点",
|
83 |
-
"Select source file processing method": "选择源文件处理方法",
|
84 |
-
"Select the model to be trained (Depending on the Tab page you are on)": "根据您所在的选项卡页面选择要训练的模型",
|
85 |
-
"Selected: {}": "已选择: {}",
|
86 |
-
"Speaker": "说话人",
|
87 |
-
"Speaker is identified by the folder name": "自动根据父目录名称识别说话人",
|
88 |
-
"Start Training": "开始训练",
|
89 |
-
"Streaming Audio": "流式音频",
|
90 |
-
"Streaming Generate": "流式合成",
|
91 |
-
"Tensorboard Host": "Tensorboard 监听地址",
|
92 |
-
"Tensorboard Log Path": "Tensorboard 日志路径",
|
93 |
-
"Tensorboard Port": "Tensorboard 端口",
|
94 |
-
"Tensorboard interface is closed": "Tensorboard 界面已关闭",
|
95 |
-
"Tensorboard interface is launched at {}": "Tensorboard 界面已在 {} 上启动",
|
96 |
-
"Text is too long, please keep it under {} characters.": "文本太长,请保持在 {} 个字符以内.",
|
97 |
-
"The path of the input folder on the left or the filelist. Whether checked or not, it will be used for subsequent training in this list.": "左侧输入文件夹的路径或文件列表。无论是否选中,都将在此列表中用于后续训练.",
|
98 |
-
"Training Configuration": "训练配置",
|
99 |
-
"Training Error": "训练错误",
|
100 |
-
"Training stopped": "训练已停止",
|
101 |
-
"Type name of the speaker": "输入说话人的名称",
|
102 |
-
"Type the path or select from the dropdown": "输入路径或从下拉菜单中选择",
|
103 |
-
"Use LoRA": "使用 LoRA",
|
104 |
-
"Use LoRA can save GPU memory, but may reduce the quality of the model": "使用 LoRA 可以节省 GPU 内存,但可能会降低模型质量",
|
105 |
-
"Use filelist": "使用文件列表",
|
106 |
-
"Use large for 10G+ GPU, medium for 5G, small for 2G": "10G+ GPU 使用 large, 5G 使用 medium, 2G 使用 small",
|
107 |
-
"VITS Configuration": "VITS 配置",
|
108 |
-
"VQGAN Configuration": "VQGAN 配置",
|
109 |
-
"Validation Batch Size": "验证批次大小",
|
110 |
-
"View the status of the preprocessing folder (use the slider to control the depth of the tree)": "查看预处理文件夹的状态 (使用滑块控制树的深度)",
|
111 |
-
"We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.": "我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.",
|
112 |
-
"WebUI Host": "WebUI 监听地址",
|
113 |
-
"WebUI Port": "WebUI 端口",
|
114 |
-
"Whisper Model": "Whisper 模型",
|
115 |
-
"You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).": "你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型.",
|
116 |
-
"bf16-true is recommended for 30+ series GPU, 16-mixed is recommended for 10+ series GPU": "30+ 系列 GPU 建议使用 bf16-true, 10+ 系列 GPU 建议使用 16-mixed",
|
117 |
-
"latest": "最近的检查点",
|
118 |
-
"new": "创建新的检查点",
|
119 |
-
"Realtime Transform Text": "实时规范化文本",
|
120 |
-
"Normalization Result Preview (Currently Only Chinese)": "规范化结果预览",
|
121 |
-
"Text Normalization": "文本规范化"
|
122 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/i18n/scan.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import ast
|
2 |
-
import glob
|
3 |
-
import json
|
4 |
-
from collections import OrderedDict
|
5 |
-
from pathlib import Path
|
6 |
-
|
7 |
-
from loguru import logger
|
8 |
-
|
9 |
-
from .core import DEFAULT_LANGUAGE, I18N_FILE_PATH
|
10 |
-
|
11 |
-
|
12 |
-
def extract_i18n_strings(node):
|
13 |
-
i18n_strings = []
|
14 |
-
|
15 |
-
if (
|
16 |
-
isinstance(node, ast.Call)
|
17 |
-
and isinstance(node.func, ast.Name)
|
18 |
-
and node.func.id == "i18n"
|
19 |
-
):
|
20 |
-
for arg in node.args:
|
21 |
-
if isinstance(arg, ast.Str):
|
22 |
-
i18n_strings.append(arg.s)
|
23 |
-
|
24 |
-
for child_node in ast.iter_child_nodes(node):
|
25 |
-
i18n_strings.extend(extract_i18n_strings(child_node))
|
26 |
-
|
27 |
-
return i18n_strings
|
28 |
-
|
29 |
-
|
30 |
-
# scan the directory for all .py files (recursively)
|
31 |
-
# for each file, parse the code into an AST
|
32 |
-
# for each AST, extract the i18n strings
|
33 |
-
|
34 |
-
strings = []
|
35 |
-
folders = ["fish_speech", "tools"]
|
36 |
-
# for filename in glob.iglob("**/*.py", recursive=True):
|
37 |
-
for folder in folders:
|
38 |
-
for f in Path(folder).rglob("*.py"):
|
39 |
-
code = f.read_text(encoding="utf-8")
|
40 |
-
if "i18n(" in code:
|
41 |
-
tree = ast.parse(code)
|
42 |
-
i18n_strings = extract_i18n_strings(tree)
|
43 |
-
logger.info(f"Found {len(i18n_strings)} i18n strings in {f}")
|
44 |
-
strings.extend(i18n_strings)
|
45 |
-
|
46 |
-
code_keys = set(strings)
|
47 |
-
logger.info(f"Total unique: {len(code_keys)}")
|
48 |
-
|
49 |
-
|
50 |
-
standard_file = I18N_FILE_PATH / f"{DEFAULT_LANGUAGE}.json"
|
51 |
-
with open(standard_file, "r", encoding="utf-8") as f:
|
52 |
-
standard_data = json.load(f, object_pairs_hook=OrderedDict)
|
53 |
-
standard_keys = set(standard_data.keys())
|
54 |
-
|
55 |
-
# Define the standard file name
|
56 |
-
unused_keys = standard_keys - code_keys
|
57 |
-
logger.info(f"Found {len(unused_keys)} unused keys in {standard_file}")
|
58 |
-
for unused_key in unused_keys:
|
59 |
-
logger.info(f"\t{unused_key}")
|
60 |
-
|
61 |
-
missing_keys = code_keys - standard_keys
|
62 |
-
logger.info(f"Found {len(missing_keys)} missing keys in {standard_file}")
|
63 |
-
for missing_key in missing_keys:
|
64 |
-
logger.info(f"\t{missing_key}")
|
65 |
-
|
66 |
-
code_keys_dict = OrderedDict()
|
67 |
-
for s in strings:
|
68 |
-
code_keys_dict[s] = s
|
69 |
-
|
70 |
-
# write back
|
71 |
-
with open(standard_file, "w", encoding="utf-8") as f:
|
72 |
-
json.dump(code_keys_dict, f, ensure_ascii=False, indent=4, sort_keys=True)
|
73 |
-
f.write("\n")
|
74 |
-
|
75 |
-
logger.info(f"Updated {standard_file}")
|
76 |
-
|
77 |
-
|
78 |
-
# Define the standard file name
|
79 |
-
standard_file = I18N_FILE_PATH / f"{DEFAULT_LANGUAGE}.json"
|
80 |
-
|
81 |
-
# Find all JSON files in the directory
|
82 |
-
dir_path = I18N_FILE_PATH
|
83 |
-
languages = [f for f in dir_path.glob("*.json") if f.stem != DEFAULT_LANGUAGE]
|
84 |
-
|
85 |
-
# Load the standard file
|
86 |
-
with open(standard_file, "r", encoding="utf-8") as f:
|
87 |
-
standard_data = json.load(f, object_pairs_hook=OrderedDict)
|
88 |
-
|
89 |
-
# Loop through each language file
|
90 |
-
for lang_file in languages:
|
91 |
-
# Load the language file
|
92 |
-
with open(lang_file, "r", encoding="utf-8") as f:
|
93 |
-
lang_data = json.load(f, object_pairs_hook=OrderedDict)
|
94 |
-
|
95 |
-
# Find the difference between the language file and the standard file
|
96 |
-
diff = set(standard_data.keys()) - set(lang_data.keys())
|
97 |
-
|
98 |
-
miss = set(lang_data.keys()) - set(standard_data.keys())
|
99 |
-
|
100 |
-
# Add any missing keys to the language file
|
101 |
-
for key in diff:
|
102 |
-
lang_data[key] = "#!" + key
|
103 |
-
logger.info(f"Added missing key: {key} to {lang_file}")
|
104 |
-
|
105 |
-
# Del any extra keys to the language file
|
106 |
-
for key in miss:
|
107 |
-
del lang_data[key]
|
108 |
-
logger.info(f"Del extra key: {key} from {lang_file}")
|
109 |
-
|
110 |
-
# Sort the keys of the language file to match the order of the standard file
|
111 |
-
lang_data = OrderedDict(
|
112 |
-
sorted(lang_data.items(), key=lambda x: list(standard_data.keys()).index(x[0]))
|
113 |
-
)
|
114 |
-
|
115 |
-
# Save the updated language file
|
116 |
-
with open(lang_file, "w", encoding="utf-8") as f:
|
117 |
-
json.dump(lang_data, f, ensure_ascii=False, indent=4, sort_keys=True)
|
118 |
-
f.write("\n")
|
119 |
-
|
120 |
-
logger.info(f"Updated {lang_file}")
|
121 |
-
|
122 |
-
logger.info("Done")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/text2semantic/__init__.py
DELETED
File without changes
|
fish_speech/models/text2semantic/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (179 Bytes)
|
|
fish_speech/models/text2semantic/__pycache__/lit_module.cpython-310.pyc
DELETED
Binary file (5.41 kB)
|
|
fish_speech/models/text2semantic/__pycache__/llama.cpython-310.pyc
DELETED
Binary file (20.8 kB)
|
|
fish_speech/models/text2semantic/__pycache__/lora.cpython-310.pyc
DELETED
Binary file (1.79 kB)
|
|
fish_speech/models/text2semantic/lit_module.py
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
from typing import Any, Optional
|
2 |
-
|
3 |
-
import lightning as L
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from lightning.pytorch.utilities.types import OptimizerLRScheduler
|
7 |
-
|
8 |
-
import fish_speech.utils as utils
|
9 |
-
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
|
10 |
-
from fish_speech.models.text2semantic.llama import NaiveTransformer
|
11 |
-
|
12 |
-
log = utils.RankedLogger(__name__, rank_zero_only=True)
|
13 |
-
|
14 |
-
|
15 |
-
class TextToSemantic(L.LightningModule):
|
16 |
-
def __init__(
|
17 |
-
self,
|
18 |
-
model: NaiveTransformer,
|
19 |
-
optimizer: Any,
|
20 |
-
lr_scheduler: Any,
|
21 |
-
):
|
22 |
-
super().__init__()
|
23 |
-
|
24 |
-
self.model = model
|
25 |
-
self.optimizer_builder = optimizer
|
26 |
-
self.lr_scheduler_builder = lr_scheduler
|
27 |
-
|
28 |
-
def forward(self, x):
|
29 |
-
return self.model(x)
|
30 |
-
|
31 |
-
def on_save_checkpoint(self, checkpoint):
|
32 |
-
# Save only LoRA parameters
|
33 |
-
state_dict = checkpoint["state_dict"]
|
34 |
-
use_lora = any("lora" in name for name in state_dict.keys())
|
35 |
-
if not use_lora:
|
36 |
-
return
|
37 |
-
|
38 |
-
for name in list(state_dict.keys()):
|
39 |
-
if "lora" not in name:
|
40 |
-
state_dict.pop(name)
|
41 |
-
|
42 |
-
def configure_optimizers(self) -> OptimizerLRScheduler:
|
43 |
-
# Get weight decay parameters
|
44 |
-
weight_decay_parameters, other_parameters = [], []
|
45 |
-
for name, param in self.named_parameters():
|
46 |
-
if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
|
47 |
-
other_parameters.append(param)
|
48 |
-
else:
|
49 |
-
weight_decay_parameters.append(param)
|
50 |
-
|
51 |
-
optimizer = self.optimizer_builder(
|
52 |
-
[
|
53 |
-
{"params": weight_decay_parameters},
|
54 |
-
{"params": other_parameters, "weight_decay": 0.0},
|
55 |
-
]
|
56 |
-
)
|
57 |
-
|
58 |
-
# Print the parameters and their weight decay
|
59 |
-
for i in optimizer.param_groups:
|
60 |
-
log.info(
|
61 |
-
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
|
62 |
-
)
|
63 |
-
|
64 |
-
lr_scheduler = self.lr_scheduler_builder(optimizer)
|
65 |
-
|
66 |
-
return {
|
67 |
-
"optimizer": optimizer,
|
68 |
-
"lr_scheduler": {
|
69 |
-
"scheduler": lr_scheduler,
|
70 |
-
"interval": "step",
|
71 |
-
},
|
72 |
-
}
|
73 |
-
|
74 |
-
# Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
|
75 |
-
def get_batch_logps(
|
76 |
-
self,
|
77 |
-
logits: torch.FloatTensor,
|
78 |
-
labels: torch.LongTensor,
|
79 |
-
average_log_prob: bool = False,
|
80 |
-
) -> torch.FloatTensor:
|
81 |
-
"""Compute the log probabilities of the given labels under the given logits.
|
82 |
-
|
83 |
-
Args:
|
84 |
-
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
|
85 |
-
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
|
86 |
-
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
90 |
-
"""
|
91 |
-
assert logits.shape[:-1] == labels.shape
|
92 |
-
|
93 |
-
labels = labels.clone()
|
94 |
-
loss_mask = labels != -100
|
95 |
-
|
96 |
-
# dummy token; we'll ignore the losses on these tokens later
|
97 |
-
labels[labels == -100] = 0
|
98 |
-
|
99 |
-
per_token_logps = torch.gather(
|
100 |
-
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
|
101 |
-
).squeeze(-1)
|
102 |
-
|
103 |
-
if average_log_prob:
|
104 |
-
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
105 |
-
else:
|
106 |
-
return (per_token_logps * loss_mask).sum(-1)
|
107 |
-
|
108 |
-
def _step(self, batch, batch_idx, stage: str):
|
109 |
-
is_train = stage == "train"
|
110 |
-
|
111 |
-
if is_train:
|
112 |
-
# Key part to make lora work
|
113 |
-
# Otherwise the parameters are merged, which lead to incorrect gradients
|
114 |
-
self.model.train()
|
115 |
-
|
116 |
-
# Do positive and negative samples in the same batch to speed up training
|
117 |
-
labels = batch["labels"]
|
118 |
-
outputs = self.model(
|
119 |
-
inp=batch["inputs"],
|
120 |
-
key_padding_mask=batch["attention_masks"],
|
121 |
-
)
|
122 |
-
token_logits = outputs.token_logits
|
123 |
-
codebook_logits = outputs.codebook_logits
|
124 |
-
|
125 |
-
# Generate labels
|
126 |
-
base_loss = F.cross_entropy(
|
127 |
-
token_logits.view(-1, token_logits.size(-1)),
|
128 |
-
labels[:, 0].reshape(-1),
|
129 |
-
ignore_index=-100,
|
130 |
-
)
|
131 |
-
|
132 |
-
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
|
133 |
-
semantic_loss = F.cross_entropy(
|
134 |
-
codebook_logits.view(-1, codebook_logits.size(-1)),
|
135 |
-
codebook_labels.reshape(-1),
|
136 |
-
ignore_index=-100,
|
137 |
-
)
|
138 |
-
|
139 |
-
loss = base_loss + semantic_loss
|
140 |
-
|
141 |
-
self.log(
|
142 |
-
f"{stage}/loss",
|
143 |
-
loss,
|
144 |
-
on_step=is_train,
|
145 |
-
on_epoch=not is_train,
|
146 |
-
prog_bar=True,
|
147 |
-
logger=True,
|
148 |
-
sync_dist=not is_train,
|
149 |
-
)
|
150 |
-
|
151 |
-
self.log(
|
152 |
-
f"{stage}/base_loss",
|
153 |
-
base_loss,
|
154 |
-
on_step=is_train,
|
155 |
-
on_epoch=not is_train,
|
156 |
-
prog_bar=False,
|
157 |
-
logger=True,
|
158 |
-
sync_dist=not is_train,
|
159 |
-
)
|
160 |
-
|
161 |
-
self.log(
|
162 |
-
f"{stage}/semantic_loss",
|
163 |
-
semantic_loss,
|
164 |
-
on_step=is_train,
|
165 |
-
on_epoch=not is_train,
|
166 |
-
prog_bar=False,
|
167 |
-
logger=True,
|
168 |
-
sync_dist=not is_train,
|
169 |
-
)
|
170 |
-
|
171 |
-
# Top-5 accuracy
|
172 |
-
accuracy = self.get_accuracy(codebook_logits, codebook_labels)
|
173 |
-
self.log(
|
174 |
-
f"{stage}/top_5_accuracy",
|
175 |
-
accuracy,
|
176 |
-
on_step=is_train,
|
177 |
-
on_epoch=not is_train,
|
178 |
-
prog_bar=True,
|
179 |
-
logger=True,
|
180 |
-
sync_dist=not is_train,
|
181 |
-
)
|
182 |
-
|
183 |
-
return loss
|
184 |
-
|
185 |
-
def get_accuracy(self, logits, labels):
|
186 |
-
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID)
|
187 |
-
if mask.sum() == 0:
|
188 |
-
return torch.tensor(0.0, device=logits.device)
|
189 |
-
|
190 |
-
_, indices = logits.topk(5, dim=-1)
|
191 |
-
correct = indices.eq(labels.unsqueeze(-1))
|
192 |
-
correct[~mask] = 0
|
193 |
-
correct = correct.sum()
|
194 |
-
accuracy = correct / mask.sum()
|
195 |
-
|
196 |
-
return accuracy
|
197 |
-
|
198 |
-
def training_step(self, batch, batch_idx):
|
199 |
-
return self._step(batch, batch_idx, "train")
|
200 |
-
|
201 |
-
def validation_step(self, batch, batch_idx):
|
202 |
-
return self._step(batch, batch_idx, "val")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/text2semantic/llama.py
DELETED
@@ -1,779 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import math
|
3 |
-
from collections import OrderedDict
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from pathlib import Path
|
6 |
-
from typing import Optional
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
from einops import rearrange
|
11 |
-
from loguru import logger
|
12 |
-
from torch import Tensor
|
13 |
-
from torch.nn import functional as F
|
14 |
-
from torch.nn.attention import SDPBackend, sdpa_kernel
|
15 |
-
from torch.utils.checkpoint import checkpoint
|
16 |
-
from transformers import AutoTokenizer
|
17 |
-
|
18 |
-
from fish_speech.conversation import SEMANTIC_TOKEN
|
19 |
-
from fish_speech.utils import RankedLogger
|
20 |
-
|
21 |
-
from .lora import LoraConfig, setup_lora
|
22 |
-
|
23 |
-
log = RankedLogger(__name__, rank_zero_only=True)
|
24 |
-
|
25 |
-
|
26 |
-
def find_multiple(n: int, k: int) -> int:
|
27 |
-
if n % k == 0:
|
28 |
-
return n
|
29 |
-
return n + k - (n % k)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class BaseModelArgs:
|
34 |
-
model_type: str = "base"
|
35 |
-
|
36 |
-
vocab_size: int = 32000
|
37 |
-
n_layer: int = 32
|
38 |
-
n_head: int = 32
|
39 |
-
dim: int = 4096
|
40 |
-
intermediate_size: int = None
|
41 |
-
n_local_heads: int = -1
|
42 |
-
head_dim: int = 64
|
43 |
-
rope_base: float = 10000
|
44 |
-
norm_eps: float = 1e-5
|
45 |
-
max_seq_len: int = 2048
|
46 |
-
dropout: float = 0.0
|
47 |
-
tie_word_embeddings: bool = True
|
48 |
-
attention_qkv_bias: bool = False
|
49 |
-
|
50 |
-
# Codebook configs
|
51 |
-
codebook_size: int = 160
|
52 |
-
num_codebooks: int = 4
|
53 |
-
|
54 |
-
# Gradient checkpointing
|
55 |
-
use_gradient_checkpointing: bool = True
|
56 |
-
|
57 |
-
# Initialize the model
|
58 |
-
initializer_range: float = 0.02
|
59 |
-
|
60 |
-
def __post_init__(self):
|
61 |
-
if self.n_local_heads == -1:
|
62 |
-
self.n_local_heads = self.n_head
|
63 |
-
if self.intermediate_size is None:
|
64 |
-
hidden_dim = 4 * self.dim
|
65 |
-
n_hidden = int(2 * hidden_dim / 3)
|
66 |
-
self.intermediate_size = find_multiple(n_hidden, 256)
|
67 |
-
self.head_dim = self.dim // self.n_head
|
68 |
-
|
69 |
-
@staticmethod
|
70 |
-
def from_pretrained(path: str):
|
71 |
-
path = Path(path)
|
72 |
-
|
73 |
-
if path.is_dir():
|
74 |
-
path = path / "config.json"
|
75 |
-
|
76 |
-
with open(path, "r", encoding="utf-8") as f:
|
77 |
-
data = json.load(f)
|
78 |
-
|
79 |
-
match data["model_type"]:
|
80 |
-
case "naive":
|
81 |
-
cls = NaiveModelArgs
|
82 |
-
case "dual_ar":
|
83 |
-
cls = DualARModelArgs
|
84 |
-
case _:
|
85 |
-
raise ValueError(f"Unknown model type: {data['model_type']}")
|
86 |
-
|
87 |
-
return cls(**data)
|
88 |
-
|
89 |
-
def save(self, path: str):
|
90 |
-
with open(path, "w") as f:
|
91 |
-
json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False)
|
92 |
-
|
93 |
-
|
94 |
-
@dataclass
|
95 |
-
class NaiveModelArgs(BaseModelArgs):
|
96 |
-
model_type: str = "naive"
|
97 |
-
|
98 |
-
|
99 |
-
@dataclass
|
100 |
-
class DualARModelArgs(BaseModelArgs):
|
101 |
-
model_type: str = "dual_ar"
|
102 |
-
n_fast_layer: int = 4
|
103 |
-
|
104 |
-
|
105 |
-
class KVCache(nn.Module):
|
106 |
-
def __init__(
|
107 |
-
self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16
|
108 |
-
):
|
109 |
-
super().__init__()
|
110 |
-
cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim)
|
111 |
-
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
|
112 |
-
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))
|
113 |
-
|
114 |
-
def update(self, input_pos, k_val, v_val):
|
115 |
-
# input_pos: [S], k_val: [B, H, S, D]
|
116 |
-
assert input_pos.shape[0] == k_val.shape[2]
|
117 |
-
|
118 |
-
k_out = self.k_cache
|
119 |
-
v_out = self.v_cache
|
120 |
-
k_out[:, :, input_pos] = k_val
|
121 |
-
v_out[:, :, input_pos] = v_val
|
122 |
-
|
123 |
-
return k_out, v_out
|
124 |
-
|
125 |
-
|
126 |
-
@dataclass
|
127 |
-
class TransformerForwardResult:
|
128 |
-
token_logits: Tensor
|
129 |
-
codebook_logits: Tensor
|
130 |
-
|
131 |
-
|
132 |
-
@dataclass
|
133 |
-
class BaseTransformerForwardResult:
|
134 |
-
logits: Tensor
|
135 |
-
hidden_states: Tensor
|
136 |
-
|
137 |
-
|
138 |
-
class BaseTransformer(nn.Module):
|
139 |
-
def __init__(
|
140 |
-
self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True
|
141 |
-
) -> None:
|
142 |
-
super().__init__()
|
143 |
-
self.config = config
|
144 |
-
self.tokenizer = tokenizer
|
145 |
-
|
146 |
-
self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN)
|
147 |
-
|
148 |
-
# Slow transformer
|
149 |
-
self.embeddings = nn.Embedding(
|
150 |
-
config.vocab_size,
|
151 |
-
config.dim,
|
152 |
-
)
|
153 |
-
self.codebook_embeddings = nn.Embedding(
|
154 |
-
config.codebook_size * config.num_codebooks,
|
155 |
-
config.dim,
|
156 |
-
)
|
157 |
-
self.layers = nn.ModuleList(
|
158 |
-
TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer)
|
159 |
-
)
|
160 |
-
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
|
161 |
-
|
162 |
-
if self.config.tie_word_embeddings is False:
|
163 |
-
self.output = nn.Linear(
|
164 |
-
config.dim,
|
165 |
-
config.vocab_size,
|
166 |
-
bias=False,
|
167 |
-
)
|
168 |
-
|
169 |
-
self.register_buffer(
|
170 |
-
"freqs_cis",
|
171 |
-
precompute_freqs_cis(
|
172 |
-
config.max_seq_len,
|
173 |
-
config.dim // config.n_head,
|
174 |
-
config.rope_base,
|
175 |
-
),
|
176 |
-
persistent=False,
|
177 |
-
)
|
178 |
-
self.register_buffer(
|
179 |
-
"causal_mask",
|
180 |
-
torch.tril(
|
181 |
-
torch.ones(
|
182 |
-
config.max_seq_len,
|
183 |
-
config.max_seq_len,
|
184 |
-
dtype=torch.bool,
|
185 |
-
)
|
186 |
-
),
|
187 |
-
persistent=False,
|
188 |
-
)
|
189 |
-
|
190 |
-
# For kv cache
|
191 |
-
self.max_batch_size = -1
|
192 |
-
self.max_seq_len = -1
|
193 |
-
|
194 |
-
if init_weights:
|
195 |
-
self.apply(self._init_weights)
|
196 |
-
|
197 |
-
def setup_caches(
|
198 |
-
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
|
199 |
-
):
|
200 |
-
if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size:
|
201 |
-
return
|
202 |
-
|
203 |
-
head_dim = self.config.dim // self.config.n_head
|
204 |
-
max_seq_len = find_multiple(max_seq_len, 8)
|
205 |
-
self.max_seq_len = max_seq_len
|
206 |
-
self.max_batch_size = max_batch_size
|
207 |
-
|
208 |
-
for b in self.layers:
|
209 |
-
b.attention.kv_cache = KVCache(
|
210 |
-
max_batch_size,
|
211 |
-
max_seq_len,
|
212 |
-
self.config.n_local_heads,
|
213 |
-
head_dim,
|
214 |
-
dtype=dtype,
|
215 |
-
)
|
216 |
-
|
217 |
-
def embed(self, x: Tensor) -> Tensor:
|
218 |
-
vocab_embeds = [self.embeddings(x[:, 0])]
|
219 |
-
for i in range(self.config.num_codebooks):
|
220 |
-
emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size)
|
221 |
-
emb[x[:, 0] != self.semantic_token_id] = 0
|
222 |
-
vocab_embeds.append(emb)
|
223 |
-
|
224 |
-
x = torch.stack(vocab_embeds, dim=3)
|
225 |
-
x = x.sum(dim=3)
|
226 |
-
|
227 |
-
return x
|
228 |
-
|
229 |
-
def forward(
|
230 |
-
self,
|
231 |
-
inp: Tensor,
|
232 |
-
key_padding_mask: Optional[Tensor] = None,
|
233 |
-
) -> BaseTransformerForwardResult:
|
234 |
-
seq_len = inp.size(2)
|
235 |
-
|
236 |
-
# Here we want to merge the embeddings of the codebooks
|
237 |
-
x = self.embed(inp)
|
238 |
-
|
239 |
-
freqs_cis = self.freqs_cis[:seq_len]
|
240 |
-
|
241 |
-
# Not that the causal mask here follows the definition of scaled_dot_product_attention
|
242 |
-
# That is, FALSE means masked out
|
243 |
-
# To maintain consistency, key_padding_mask use TRUE to mask out
|
244 |
-
mask = None
|
245 |
-
if key_padding_mask is not None:
|
246 |
-
mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K)
|
247 |
-
mask = mask & key_padding_mask[:, None, None, :].logical_not()
|
248 |
-
|
249 |
-
for layer in self.layers:
|
250 |
-
if self.config.use_gradient_checkpointing and self.training:
|
251 |
-
x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True)
|
252 |
-
else:
|
253 |
-
x = layer(x, freqs_cis, mask)
|
254 |
-
|
255 |
-
# We got slow_out here
|
256 |
-
slow_out = self.norm(x)
|
257 |
-
|
258 |
-
if self.config.tie_word_embeddings:
|
259 |
-
token_logits = F.linear(slow_out, self.embeddings.weight)
|
260 |
-
else:
|
261 |
-
token_logits = self.output(slow_out)
|
262 |
-
|
263 |
-
return BaseTransformerForwardResult(
|
264 |
-
logits=token_logits,
|
265 |
-
hidden_states=x,
|
266 |
-
)
|
267 |
-
|
268 |
-
def forward_generate(
|
269 |
-
self,
|
270 |
-
x: Tensor,
|
271 |
-
input_pos: Optional[Tensor] = None,
|
272 |
-
return_all: bool = False,
|
273 |
-
) -> BaseTransformerForwardResult:
|
274 |
-
# This is used for generation, optimized for torch compile
|
275 |
-
assert (
|
276 |
-
self.max_seq_len != -1 and self.max_batch_size != -1
|
277 |
-
), "Please call setup_caches before forward_generate"
|
278 |
-
|
279 |
-
x = self.embed(x)
|
280 |
-
|
281 |
-
mask = self.causal_mask[
|
282 |
-
None, None, input_pos, : self.max_seq_len
|
283 |
-
] # (B, N, Q, K)
|
284 |
-
freqs_cis = self.freqs_cis[input_pos]
|
285 |
-
|
286 |
-
for layer in self.layers:
|
287 |
-
x = layer(x, freqs_cis, mask, input_pos=input_pos)
|
288 |
-
|
289 |
-
# If prefill, we only calculate the logits of last token
|
290 |
-
if x.size(1) > 1 and not return_all:
|
291 |
-
x = x[:, -1:]
|
292 |
-
|
293 |
-
# We got slow_out here
|
294 |
-
slow_out = self.norm(x)
|
295 |
-
|
296 |
-
if self.config.tie_word_embeddings:
|
297 |
-
token_logits = F.linear(slow_out, self.embeddings.weight)
|
298 |
-
else:
|
299 |
-
token_logits = self.output(slow_out)
|
300 |
-
|
301 |
-
return BaseTransformerForwardResult(
|
302 |
-
logits=token_logits,
|
303 |
-
hidden_states=x,
|
304 |
-
)
|
305 |
-
|
306 |
-
def _init_weights(self, module):
|
307 |
-
std = self.config.initializer_range
|
308 |
-
if isinstance(module, nn.Linear):
|
309 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
310 |
-
if module.bias is not None:
|
311 |
-
module.bias.data.zero_()
|
312 |
-
elif isinstance(module, nn.Embedding):
|
313 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
314 |
-
if module.padding_idx is not None:
|
315 |
-
module.weight.data[module.padding_idx].zero_()
|
316 |
-
|
317 |
-
@staticmethod
|
318 |
-
def from_pretrained(
|
319 |
-
path: str,
|
320 |
-
load_weights: bool = False,
|
321 |
-
max_length: int | None = None,
|
322 |
-
lora_config: LoraConfig | None = None,
|
323 |
-
rope_base: int | None = None,
|
324 |
-
) -> "BaseTransformer":
|
325 |
-
config = BaseModelArgs.from_pretrained(str(path))
|
326 |
-
if max_length is not None:
|
327 |
-
config.max_seq_len = max_length
|
328 |
-
log.info(f"Override max_seq_len to {max_length}")
|
329 |
-
|
330 |
-
if rope_base is not None:
|
331 |
-
config.rope_base = rope_base
|
332 |
-
log.info(f"Override rope_base to {rope_base}")
|
333 |
-
|
334 |
-
match config.model_type:
|
335 |
-
case "naive":
|
336 |
-
model_cls = NaiveTransformer
|
337 |
-
case "dual_ar":
|
338 |
-
model_cls = DualARTransformer
|
339 |
-
case _:
|
340 |
-
raise ValueError(f"Unknown model type: {config.model_type}")
|
341 |
-
|
342 |
-
tokenizer = AutoTokenizer.from_pretrained(str(path))
|
343 |
-
log.info(f"Loading model from {path}, config: {config}")
|
344 |
-
model = model_cls(config, tokenizer=tokenizer)
|
345 |
-
|
346 |
-
if lora_config is not None:
|
347 |
-
setup_lora(model, lora_config)
|
348 |
-
log.info(f"LoRA setup: {lora_config}")
|
349 |
-
|
350 |
-
if load_weights is False:
|
351 |
-
log.info("Randomly initialized model")
|
352 |
-
else:
|
353 |
-
|
354 |
-
if "int8" in str(Path(path)):
|
355 |
-
logger.info("Using int8 weight-only quantization!")
|
356 |
-
from tools.llama.quantize import WeightOnlyInt8QuantHandler
|
357 |
-
|
358 |
-
simple_quantizer = WeightOnlyInt8QuantHandler(model)
|
359 |
-
model = simple_quantizer.convert_for_runtime()
|
360 |
-
|
361 |
-
if "int4" in str(Path(path)):
|
362 |
-
logger.info("Using int4 quantization!")
|
363 |
-
path_comps = path.name.split("-")
|
364 |
-
assert path_comps[-2].startswith("g")
|
365 |
-
groupsize = int(path_comps[-2][1:])
|
366 |
-
from tools.llama.quantize import WeightOnlyInt4QuantHandler
|
367 |
-
|
368 |
-
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
|
369 |
-
model = simple_quantizer.convert_for_runtime()
|
370 |
-
|
371 |
-
weights = torch.load(
|
372 |
-
Path(path) / "model.pth", map_location="cpu", mmap=True
|
373 |
-
)
|
374 |
-
|
375 |
-
if "state_dict" in weights:
|
376 |
-
logger.warning(
|
377 |
-
"Using a TextToSemantic LightningModule checkpoint, "
|
378 |
-
"please make sure it is a full model, not a LoRA model."
|
379 |
-
)
|
380 |
-
weights = weights["state_dict"]
|
381 |
-
|
382 |
-
if next(iter(weights.keys())).startswith("model."):
|
383 |
-
logger.info(
|
384 |
-
f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys"
|
385 |
-
)
|
386 |
-
new_weights = OrderedDict()
|
387 |
-
for k, v in weights.items():
|
388 |
-
new_weights[k.replace("model.", "")] = v
|
389 |
-
weights = new_weights
|
390 |
-
|
391 |
-
# Verify the name and shape of parameters since strict=False in load_state_dict.
|
392 |
-
for k, v in model.named_parameters():
|
393 |
-
if k not in weights:
|
394 |
-
logger.warning(f"No weight for {k}")
|
395 |
-
elif v.shape != weights[k].shape:
|
396 |
-
logger.warning(
|
397 |
-
f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}"
|
398 |
-
)
|
399 |
-
|
400 |
-
err = model.load_state_dict(weights, strict=False, assign=True)
|
401 |
-
log.info(f"Loaded weights with error: {err}")
|
402 |
-
|
403 |
-
return model
|
404 |
-
|
405 |
-
def save_pretrained(self, path: str, drop_lora: bool = False):
|
406 |
-
path = Path(path)
|
407 |
-
path.mkdir(parents=True, exist_ok=True)
|
408 |
-
|
409 |
-
self.config.save(path / "config.json")
|
410 |
-
state_dict = self.state_dict()
|
411 |
-
|
412 |
-
if drop_lora:
|
413 |
-
for key in list(state_dict.keys()):
|
414 |
-
if "lora" not in key:
|
415 |
-
continue
|
416 |
-
|
417 |
-
state_dict.pop(key)
|
418 |
-
log.info(f"Drop LoRA parameter: {key}")
|
419 |
-
|
420 |
-
torch.save(state_dict, path / "model.pth")
|
421 |
-
self.tokenizer.save_pretrained(path)
|
422 |
-
|
423 |
-
|
424 |
-
class NaiveTransformer(BaseTransformer):
|
425 |
-
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
|
426 |
-
super().__init__(config, init_weights=False, tokenizer=tokenizer)
|
427 |
-
|
428 |
-
self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
429 |
-
self.codebook_output = nn.Linear(
|
430 |
-
config.dim,
|
431 |
-
config.codebook_size * config.num_codebooks,
|
432 |
-
bias=False,
|
433 |
-
)
|
434 |
-
|
435 |
-
self.apply(self._init_weights)
|
436 |
-
|
437 |
-
def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult:
|
438 |
-
token_logits = result.logits
|
439 |
-
x = result.hidden_states
|
440 |
-
|
441 |
-
# Codebook
|
442 |
-
codebook_logits = self.codebook_output(self.codebook_norm(x))
|
443 |
-
codebook_logits = rearrange(
|
444 |
-
codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks
|
445 |
-
)
|
446 |
-
|
447 |
-
return TransformerForwardResult(
|
448 |
-
token_logits=token_logits,
|
449 |
-
codebook_logits=codebook_logits,
|
450 |
-
)
|
451 |
-
|
452 |
-
def forward(
|
453 |
-
self,
|
454 |
-
inp: Tensor,
|
455 |
-
key_padding_mask: Optional[Tensor] = None,
|
456 |
-
) -> TransformerForwardResult:
|
457 |
-
result = super().forward(
|
458 |
-
inp=inp,
|
459 |
-
key_padding_mask=key_padding_mask,
|
460 |
-
)
|
461 |
-
return self.decode(result)
|
462 |
-
|
463 |
-
def forward_generate(
|
464 |
-
self, x: Tensor, input_pos: Optional[Tensor] = None
|
465 |
-
) -> TransformerForwardResult:
|
466 |
-
result = super().forward_generate(x, input_pos)
|
467 |
-
return self.decode(result)
|
468 |
-
|
469 |
-
|
470 |
-
class DualARTransformer(BaseTransformer):
|
471 |
-
def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
|
472 |
-
super().__init__(config, init_weights=False, tokenizer=tokenizer)
|
473 |
-
|
474 |
-
# Fast transformer
|
475 |
-
self.fast_embeddings = nn.Embedding(config.codebook_size, config.dim)
|
476 |
-
|
477 |
-
# The equivalent bs is so large that sdpa doesn't work
|
478 |
-
self.fast_layers = nn.ModuleList(
|
479 |
-
TransformerBlock(config, use_sdpa=False) for _ in range(config.n_fast_layer)
|
480 |
-
)
|
481 |
-
self.fast_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
482 |
-
self.fast_output = nn.Linear(
|
483 |
-
config.dim,
|
484 |
-
config.codebook_size,
|
485 |
-
bias=False,
|
486 |
-
)
|
487 |
-
|
488 |
-
self.apply(self._init_weights)
|
489 |
-
|
490 |
-
def setup_caches(
|
491 |
-
self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
|
492 |
-
):
|
493 |
-
super().setup_caches(max_batch_size, max_seq_len, dtype)
|
494 |
-
|
495 |
-
head_dim = self.config.dim // self.config.n_head
|
496 |
-
|
497 |
-
# Fast transformer
|
498 |
-
# The max seq len here is the number of codebooks
|
499 |
-
for b in self.fast_layers:
|
500 |
-
b.attention.kv_cache = KVCache(
|
501 |
-
max_batch_size,
|
502 |
-
self.config.num_codebooks,
|
503 |
-
self.config.n_local_heads,
|
504 |
-
head_dim,
|
505 |
-
dtype=dtype,
|
506 |
-
)
|
507 |
-
|
508 |
-
def forward(
|
509 |
-
self,
|
510 |
-
inp: Tensor,
|
511 |
-
key_padding_mask: Optional[Tensor] = None,
|
512 |
-
) -> TransformerForwardResult:
|
513 |
-
parent_result = super().forward(inp, key_padding_mask)
|
514 |
-
token_logits = parent_result.logits
|
515 |
-
x = parent_result.hidden_states
|
516 |
-
|
517 |
-
# Fast transformer
|
518 |
-
fast_seq_len = self.config.num_codebooks
|
519 |
-
fast_mask = self.causal_mask[
|
520 |
-
None, None, :fast_seq_len, :fast_seq_len
|
521 |
-
] # (B, N, Q, K)
|
522 |
-
fast_freqs_cis = self.freqs_cis[:fast_seq_len]
|
523 |
-
|
524 |
-
# Drop the last token and rotate left
|
525 |
-
codebooks = inp[:, 1:-1, 1:]
|
526 |
-
codebooks = F.pad(codebooks, (0, 1), value=0)
|
527 |
-
codebook_embeddings = self.fast_embeddings(codebooks)
|
528 |
-
x = torch.cat([x[:, None], codebook_embeddings], dim=1)
|
529 |
-
b, s = x.size(0), x.size(2)
|
530 |
-
x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len
|
531 |
-
|
532 |
-
# Remove padded part
|
533 |
-
codebooks = rearrange(codebooks, "b n s -> (b s) n")
|
534 |
-
codebook_mask = (codebooks == 0).all(dim=-1)
|
535 |
-
|
536 |
-
if torch.all(codebook_mask):
|
537 |
-
# If all codebooks are padded, we keep first 8 to make sure the model runs
|
538 |
-
codebook_mask[:8] = False
|
539 |
-
|
540 |
-
x_bs, x_len = x.size(0), x.size(1)
|
541 |
-
x = x[~codebook_mask]
|
542 |
-
|
543 |
-
for layer in self.fast_layers:
|
544 |
-
if self.config.use_gradient_checkpointing and self.training:
|
545 |
-
x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True)
|
546 |
-
else:
|
547 |
-
x = layer(x, fast_freqs_cis, fast_mask)
|
548 |
-
|
549 |
-
# unflatten the batch and num_codebooks
|
550 |
-
fast_out = self.fast_norm(x)
|
551 |
-
codebook_logits = self.fast_output(fast_out)
|
552 |
-
|
553 |
-
# Re-pad the codebook_logits
|
554 |
-
buffer = torch.zeros(
|
555 |
-
x_bs,
|
556 |
-
x_len,
|
557 |
-
codebook_logits.size(-1),
|
558 |
-
device=codebook_logits.device,
|
559 |
-
dtype=codebook_logits.dtype,
|
560 |
-
)
|
561 |
-
buffer[~codebook_mask] = codebook_logits
|
562 |
-
codebook_logits = buffer
|
563 |
-
|
564 |
-
assert codebook_logits.shape[1] == self.config.num_codebooks
|
565 |
-
codebook_logits = rearrange(
|
566 |
-
codebook_logits,
|
567 |
-
"(b s) n d -> b s n d",
|
568 |
-
b=b,
|
569 |
-
s=s,
|
570 |
-
n=self.config.num_codebooks,
|
571 |
-
)
|
572 |
-
|
573 |
-
return TransformerForwardResult(
|
574 |
-
token_logits=token_logits,
|
575 |
-
codebook_logits=codebook_logits,
|
576 |
-
)
|
577 |
-
|
578 |
-
def forward_generate_fast(
|
579 |
-
self, x: Tensor, input_pos: Optional[Tensor] = None
|
580 |
-
) -> Tensor:
|
581 |
-
# Fast transformer
|
582 |
-
x = x.view(1, 1, -1)
|
583 |
-
|
584 |
-
fast_mask = self.causal_mask[
|
585 |
-
None, None, input_pos, : self.config.num_codebooks
|
586 |
-
] # (B, N, Q, K)
|
587 |
-
fast_freqs_cis = self.freqs_cis[input_pos]
|
588 |
-
|
589 |
-
for layer in self.fast_layers:
|
590 |
-
x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos)
|
591 |
-
|
592 |
-
# unflatten the batch and num_codebooks
|
593 |
-
fast_out = self.fast_norm(x) # only take the last token
|
594 |
-
codebook_logits = self.fast_output(fast_out)
|
595 |
-
|
596 |
-
return codebook_logits
|
597 |
-
|
598 |
-
|
599 |
-
class TransformerBlock(nn.Module):
|
600 |
-
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None:
|
601 |
-
super().__init__()
|
602 |
-
self.attention = Attention(config, use_sdpa=use_sdpa)
|
603 |
-
self.feed_forward = FeedForward(config)
|
604 |
-
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
|
605 |
-
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
|
606 |
-
|
607 |
-
def forward(
|
608 |
-
self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None
|
609 |
-
) -> Tensor:
|
610 |
-
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
|
611 |
-
out = h + self.feed_forward(self.ffn_norm(h))
|
612 |
-
return out
|
613 |
-
|
614 |
-
|
615 |
-
class Attention(nn.Module):
|
616 |
-
def __init__(self, config: BaseModelArgs, use_sdpa: bool = True):
|
617 |
-
super().__init__()
|
618 |
-
assert config.dim % config.n_head == 0
|
619 |
-
|
620 |
-
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
|
621 |
-
# key, query, value projections for all heads, but in a batch
|
622 |
-
self.wqkv = nn.Linear(
|
623 |
-
config.dim, total_head_dim, bias=config.attention_qkv_bias
|
624 |
-
)
|
625 |
-
self.wo = nn.Linear(config.dim, config.dim, bias=False)
|
626 |
-
self.kv_cache = None
|
627 |
-
|
628 |
-
self.dropout = config.dropout
|
629 |
-
self.n_head = config.n_head
|
630 |
-
self.head_dim = config.head_dim
|
631 |
-
self.n_local_heads = config.n_local_heads
|
632 |
-
self.dim = config.dim
|
633 |
-
self.use_sdpa = use_sdpa
|
634 |
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
635 |
-
|
636 |
-
def load_hook(self, state_dict, prefix, *args):
|
637 |
-
if prefix + "wq.weight" in state_dict:
|
638 |
-
wq = state_dict.pop(prefix + "wq.weight")
|
639 |
-
wk = state_dict.pop(prefix + "wk.weight")
|
640 |
-
wv = state_dict.pop(prefix + "wv.weight")
|
641 |
-
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
642 |
-
|
643 |
-
def forward(
|
644 |
-
self,
|
645 |
-
x: Tensor,
|
646 |
-
freqs_cis: Tensor,
|
647 |
-
mask: Tensor,
|
648 |
-
input_pos: Optional[Tensor] = None,
|
649 |
-
) -> Tensor:
|
650 |
-
bsz, seqlen, _ = x.shape
|
651 |
-
|
652 |
-
kv_size = self.n_local_heads * self.head_dim
|
653 |
-
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
|
654 |
-
|
655 |
-
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
|
656 |
-
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
657 |
-
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
658 |
-
|
659 |
-
q = apply_rotary_emb(q, freqs_cis)
|
660 |
-
k = apply_rotary_emb(k, freqs_cis)
|
661 |
-
|
662 |
-
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
663 |
-
|
664 |
-
if self.kv_cache is not None:
|
665 |
-
k, v = self.kv_cache.update(input_pos, k, v)
|
666 |
-
|
667 |
-
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
668 |
-
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
|
669 |
-
|
670 |
-
if self.use_sdpa:
|
671 |
-
if mask is None:
|
672 |
-
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
673 |
-
y = F.scaled_dot_product_attention(
|
674 |
-
q,
|
675 |
-
k,
|
676 |
-
v,
|
677 |
-
dropout_p=self.dropout if self.training else 0.0,
|
678 |
-
is_causal=True,
|
679 |
-
# No third party attn_mask here to use flash_attention
|
680 |
-
)
|
681 |
-
else:
|
682 |
-
y = F.scaled_dot_product_attention(
|
683 |
-
q,
|
684 |
-
k,
|
685 |
-
v,
|
686 |
-
attn_mask=mask,
|
687 |
-
dropout_p=self.dropout if self.training else 0.0,
|
688 |
-
)
|
689 |
-
else:
|
690 |
-
y = self.eq_scaled_dot_product_attention(
|
691 |
-
q,
|
692 |
-
k,
|
693 |
-
v,
|
694 |
-
attn_mask=mask,
|
695 |
-
dropout_p=self.dropout if self.training else 0.0,
|
696 |
-
)
|
697 |
-
|
698 |
-
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
|
699 |
-
|
700 |
-
return self.wo(y)
|
701 |
-
|
702 |
-
def eq_scaled_dot_product_attention(
|
703 |
-
self,
|
704 |
-
query,
|
705 |
-
key,
|
706 |
-
value,
|
707 |
-
attn_mask=None,
|
708 |
-
dropout_p=0.0,
|
709 |
-
) -> torch.Tensor:
|
710 |
-
# This is a standard scaled dot product attention
|
711 |
-
# It's low efficient, but it doesn't raise cuda error
|
712 |
-
|
713 |
-
L, S = query.size(-2), key.size(-2)
|
714 |
-
scale_factor = 1 / math.sqrt(query.size(-1))
|
715 |
-
attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)
|
716 |
-
|
717 |
-
if attn_mask is not None:
|
718 |
-
if attn_mask.dtype == torch.bool:
|
719 |
-
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
720 |
-
else:
|
721 |
-
attn_bias += attn_mask
|
722 |
-
|
723 |
-
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
724 |
-
attn_weight += attn_bias
|
725 |
-
attn_weight = torch.softmax(attn_weight, dim=-1)
|
726 |
-
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
727 |
-
|
728 |
-
return attn_weight @ value
|
729 |
-
|
730 |
-
|
731 |
-
class FeedForward(nn.Module):
|
732 |
-
def __init__(self, config: BaseModelArgs) -> None:
|
733 |
-
super().__init__()
|
734 |
-
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
735 |
-
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
|
736 |
-
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
|
737 |
-
|
738 |
-
def forward(self, x: Tensor) -> Tensor:
|
739 |
-
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
740 |
-
|
741 |
-
|
742 |
-
class RMSNorm(nn.Module):
|
743 |
-
def __init__(self, dim: int, eps: float = 1e-5):
|
744 |
-
super().__init__()
|
745 |
-
self.eps = eps
|
746 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
747 |
-
|
748 |
-
def _norm(self, x):
|
749 |
-
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
750 |
-
|
751 |
-
def forward(self, x: Tensor) -> Tensor:
|
752 |
-
output = self._norm(x.float()).type_as(x)
|
753 |
-
return output * self.weight
|
754 |
-
|
755 |
-
|
756 |
-
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
|
757 |
-
freqs = 1.0 / (
|
758 |
-
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
|
759 |
-
)
|
760 |
-
t = torch.arange(seq_len, device=freqs.device)
|
761 |
-
freqs = torch.outer(t, freqs)
|
762 |
-
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
763 |
-
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
764 |
-
return cache.to(dtype=torch.bfloat16)
|
765 |
-
|
766 |
-
|
767 |
-
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
|
768 |
-
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
|
769 |
-
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
|
770 |
-
x_out2 = torch.stack(
|
771 |
-
[
|
772 |
-
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
|
773 |
-
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
|
774 |
-
],
|
775 |
-
-1,
|
776 |
-
)
|
777 |
-
|
778 |
-
x_out2 = x_out2.flatten(3)
|
779 |
-
return x_out2.type_as(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/text2semantic/lora.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
import loralib as lora
|
4 |
-
|
5 |
-
|
6 |
-
@dataclass
|
7 |
-
class LoraConfig:
|
8 |
-
r: int
|
9 |
-
lora_alpha: float
|
10 |
-
lora_dropout: float = 0.0
|
11 |
-
|
12 |
-
|
13 |
-
def setup_lora(model, lora_config):
|
14 |
-
# Replace the embedding layer with a LoRA layer
|
15 |
-
model.embeddings = lora.Embedding(
|
16 |
-
num_embeddings=model.embeddings.num_embeddings,
|
17 |
-
embedding_dim=model.embeddings.embedding_dim,
|
18 |
-
padding_idx=model.embeddings.padding_idx,
|
19 |
-
r=lora_config.r,
|
20 |
-
lora_alpha=lora_config.lora_alpha,
|
21 |
-
)
|
22 |
-
|
23 |
-
model.codebook_embeddings = lora.Embedding(
|
24 |
-
num_embeddings=model.codebook_embeddings.num_embeddings,
|
25 |
-
embedding_dim=model.codebook_embeddings.embedding_dim,
|
26 |
-
padding_idx=model.codebook_embeddings.padding_idx,
|
27 |
-
r=lora_config.r,
|
28 |
-
lora_alpha=lora_config.lora_alpha,
|
29 |
-
)
|
30 |
-
|
31 |
-
# Replace output layer with a LoRA layer
|
32 |
-
linears = [(model, "output")]
|
33 |
-
|
34 |
-
# Replace all linear layers with LoRA layers
|
35 |
-
for layer in model.layers:
|
36 |
-
linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")])
|
37 |
-
linears.extend(
|
38 |
-
[
|
39 |
-
(layer.feed_forward, "w1"),
|
40 |
-
(layer.feed_forward, "w2"),
|
41 |
-
(layer.feed_forward, "w3"),
|
42 |
-
]
|
43 |
-
)
|
44 |
-
|
45 |
-
if hasattr(model, "fast_layers"):
|
46 |
-
model.fast_embeddings = lora.Embedding(
|
47 |
-
num_embeddings=model.fast_embeddings.num_embeddings,
|
48 |
-
embedding_dim=model.fast_embeddings.embedding_dim,
|
49 |
-
padding_idx=model.fast_embeddings.padding_idx,
|
50 |
-
r=lora_config.r,
|
51 |
-
lora_alpha=lora_config.lora_alpha,
|
52 |
-
)
|
53 |
-
|
54 |
-
# Dual-AR model
|
55 |
-
linears.append((model, "fast_output"))
|
56 |
-
|
57 |
-
for layer in model.fast_layers:
|
58 |
-
linears.extend([(layer.attention, "wqkv"), (layer.attention, "wo")])
|
59 |
-
linears.extend(
|
60 |
-
[
|
61 |
-
(layer.feed_forward, "w1"),
|
62 |
-
(layer.feed_forward, "w2"),
|
63 |
-
(layer.feed_forward, "w3"),
|
64 |
-
]
|
65 |
-
)
|
66 |
-
|
67 |
-
for module, layer in linears:
|
68 |
-
updated_linear = lora.Linear(
|
69 |
-
in_features=getattr(module, layer).in_features,
|
70 |
-
out_features=getattr(module, layer).out_features,
|
71 |
-
bias=getattr(module, layer).bias,
|
72 |
-
r=lora_config.r,
|
73 |
-
lora_alpha=lora_config.lora_alpha,
|
74 |
-
lora_dropout=lora_config.lora_dropout,
|
75 |
-
)
|
76 |
-
setattr(module, layer, updated_linear)
|
77 |
-
|
78 |
-
# Mark only the LoRA layers as trainable
|
79 |
-
lora.mark_only_lora_as_trainable(model, bias="none")
|
80 |
-
|
81 |
-
|
82 |
-
def get_merged_state_dict(model):
|
83 |
-
# This line will merge the state dict of the model and the LoRA parameters
|
84 |
-
model.eval()
|
85 |
-
|
86 |
-
# Then we need to remove the LoRA parameters from the state dict
|
87 |
-
state_dict = model.state_dict()
|
88 |
-
for name in list(state_dict.keys()):
|
89 |
-
if "lora" in name:
|
90 |
-
state_dict.pop(name)
|
91 |
-
|
92 |
-
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/vqgan/__init__.py
DELETED
File without changes
|
fish_speech/models/vqgan/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (171 Bytes)
|
|
fish_speech/models/vqgan/modules/__pycache__/firefly.cpython-310.pyc
DELETED
Binary file (18.3 kB)
|
|
fish_speech/models/vqgan/modules/__pycache__/fsq.cpython-310.pyc
DELETED
Binary file (3.72 kB)
|
|
fish_speech/models/vqgan/modules/firefly.py
DELETED
@@ -1,596 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from functools import partial
|
3 |
-
from math import prod
|
4 |
-
from typing import Callable
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from torch import nn
|
9 |
-
from torch.nn.utils.parametrizations import weight_norm
|
10 |
-
from torch.nn.utils.parametrize import remove_parametrizations
|
11 |
-
from torch.utils.checkpoint import checkpoint
|
12 |
-
|
13 |
-
|
14 |
-
def sequence_mask(length, max_length=None):
|
15 |
-
if max_length is None:
|
16 |
-
max_length = length.max()
|
17 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
18 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
19 |
-
|
20 |
-
|
21 |
-
def init_weights(m, mean=0.0, std=0.01):
|
22 |
-
classname = m.__class__.__name__
|
23 |
-
if classname.find("Conv1D") != -1:
|
24 |
-
m.weight.data.normal_(mean, std)
|
25 |
-
|
26 |
-
|
27 |
-
def get_padding(kernel_size, dilation=1):
|
28 |
-
return (kernel_size * dilation - dilation) // 2
|
29 |
-
|
30 |
-
|
31 |
-
def unpad1d(x: torch.Tensor, paddings: tuple[int, int]):
|
32 |
-
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
33 |
-
padding_left, padding_right = paddings
|
34 |
-
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
35 |
-
assert (padding_left + padding_right) <= x.shape[-1]
|
36 |
-
end = x.shape[-1] - padding_right
|
37 |
-
return x[..., padding_left:end]
|
38 |
-
|
39 |
-
|
40 |
-
def get_extra_padding_for_conv1d(
|
41 |
-
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0
|
42 |
-
) -> int:
|
43 |
-
"""See `pad_for_conv1d`."""
|
44 |
-
length = x.shape[-1]
|
45 |
-
n_frames = (length - kernel_size + padding_total) / stride + 1
|
46 |
-
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
47 |
-
return ideal_length - length
|
48 |
-
|
49 |
-
|
50 |
-
def pad1d(
|
51 |
-
x: torch.Tensor,
|
52 |
-
paddings: tuple[int, int],
|
53 |
-
mode: str = "zeros",
|
54 |
-
value: float = 0.0,
|
55 |
-
):
|
56 |
-
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
57 |
-
If this is the case, we insert extra 0 padding to the right
|
58 |
-
before the reflection happen.
|
59 |
-
"""
|
60 |
-
length = x.shape[-1]
|
61 |
-
padding_left, padding_right = paddings
|
62 |
-
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
63 |
-
if mode == "reflect":
|
64 |
-
max_pad = max(padding_left, padding_right)
|
65 |
-
extra_pad = 0
|
66 |
-
if length <= max_pad:
|
67 |
-
extra_pad = max_pad - length + 1
|
68 |
-
x = F.pad(x, (0, extra_pad))
|
69 |
-
padded = F.pad(x, paddings, mode, value)
|
70 |
-
end = padded.shape[-1] - extra_pad
|
71 |
-
return padded[..., :end]
|
72 |
-
else:
|
73 |
-
return F.pad(x, paddings, mode, value)
|
74 |
-
|
75 |
-
|
76 |
-
class FishConvNet(nn.Module):
|
77 |
-
def __init__(
|
78 |
-
self, in_channels, out_channels, kernel_size, dilation=1, stride=1, groups=1
|
79 |
-
):
|
80 |
-
super(FishConvNet, self).__init__()
|
81 |
-
self.conv = nn.Conv1d(
|
82 |
-
in_channels,
|
83 |
-
out_channels,
|
84 |
-
kernel_size,
|
85 |
-
stride=stride,
|
86 |
-
dilation=dilation,
|
87 |
-
groups=groups,
|
88 |
-
)
|
89 |
-
self.stride = stride
|
90 |
-
self.kernel_size = (kernel_size - 1) * dilation + 1
|
91 |
-
self.dilation = dilation
|
92 |
-
|
93 |
-
def forward(self, x):
|
94 |
-
pad = self.kernel_size - self.stride
|
95 |
-
extra_padding = get_extra_padding_for_conv1d(
|
96 |
-
x, self.kernel_size, self.stride, pad
|
97 |
-
)
|
98 |
-
x = pad1d(x, (pad, extra_padding), mode="constant", value=0)
|
99 |
-
return self.conv(x).contiguous()
|
100 |
-
|
101 |
-
def weight_norm(self, name="weight", dim=0):
|
102 |
-
self.conv = weight_norm(self.conv, name=name, dim=dim)
|
103 |
-
return self
|
104 |
-
|
105 |
-
def remove_weight_norm(self):
|
106 |
-
self.conv = remove_parametrizations(self.conv)
|
107 |
-
return self
|
108 |
-
|
109 |
-
|
110 |
-
class FishTransConvNet(nn.Module):
|
111 |
-
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, stride=1):
|
112 |
-
super(FishTransConvNet, self).__init__()
|
113 |
-
self.conv = nn.ConvTranspose1d(
|
114 |
-
in_channels, out_channels, kernel_size, stride=stride, dilation=dilation
|
115 |
-
)
|
116 |
-
self.stride = stride
|
117 |
-
self.kernel_size = kernel_size
|
118 |
-
|
119 |
-
def forward(self, x):
|
120 |
-
x = self.conv(x)
|
121 |
-
pad = self.kernel_size - self.stride
|
122 |
-
padding_right = math.ceil(pad)
|
123 |
-
padding_left = pad - padding_right
|
124 |
-
x = unpad1d(x, (padding_left, padding_right))
|
125 |
-
return x.contiguous()
|
126 |
-
|
127 |
-
def weight_norm(self, name="weight", dim=0):
|
128 |
-
self.conv = weight_norm(self.conv, name=name, dim=dim)
|
129 |
-
return self
|
130 |
-
|
131 |
-
def remove_weight_norm(self):
|
132 |
-
self.conv = remove_parametrizations(self.conv)
|
133 |
-
return self
|
134 |
-
|
135 |
-
|
136 |
-
class ResBlock1(torch.nn.Module):
|
137 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
138 |
-
super().__init__()
|
139 |
-
|
140 |
-
self.convs1 = nn.ModuleList(
|
141 |
-
[
|
142 |
-
FishConvNet(
|
143 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[0]
|
144 |
-
).weight_norm(),
|
145 |
-
FishConvNet(
|
146 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[1]
|
147 |
-
).weight_norm(),
|
148 |
-
FishConvNet(
|
149 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[2]
|
150 |
-
).weight_norm(),
|
151 |
-
]
|
152 |
-
)
|
153 |
-
self.convs1.apply(init_weights)
|
154 |
-
|
155 |
-
self.convs2 = nn.ModuleList(
|
156 |
-
[
|
157 |
-
FishConvNet(
|
158 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[0]
|
159 |
-
).weight_norm(),
|
160 |
-
FishConvNet(
|
161 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[1]
|
162 |
-
).weight_norm(),
|
163 |
-
FishConvNet(
|
164 |
-
channels, channels, kernel_size, stride=1, dilation=dilation[2]
|
165 |
-
).weight_norm(),
|
166 |
-
]
|
167 |
-
)
|
168 |
-
self.convs2.apply(init_weights)
|
169 |
-
|
170 |
-
def forward(self, x):
|
171 |
-
for c1, c2 in zip(self.convs1, self.convs2):
|
172 |
-
xt = F.silu(x)
|
173 |
-
xt = c1(xt)
|
174 |
-
xt = F.silu(xt)
|
175 |
-
xt = c2(xt)
|
176 |
-
x = xt + x
|
177 |
-
return x
|
178 |
-
|
179 |
-
def remove_parametrizations(self):
|
180 |
-
for conv in self.convs1:
|
181 |
-
remove_parametrizations(conv, tensor_name="weight")
|
182 |
-
for conv in self.convs2:
|
183 |
-
remove_parametrizations(conv, tensor_name="weight")
|
184 |
-
|
185 |
-
|
186 |
-
class ParallelBlock(nn.Module):
|
187 |
-
def __init__(
|
188 |
-
self,
|
189 |
-
channels: int,
|
190 |
-
kernel_sizes: tuple[int] = (3, 7, 11),
|
191 |
-
dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
192 |
-
):
|
193 |
-
super().__init__()
|
194 |
-
|
195 |
-
assert len(kernel_sizes) == len(dilation_sizes)
|
196 |
-
|
197 |
-
self.blocks = nn.ModuleList()
|
198 |
-
for k, d in zip(kernel_sizes, dilation_sizes):
|
199 |
-
self.blocks.append(ResBlock1(channels, k, d))
|
200 |
-
|
201 |
-
def forward(self, x):
|
202 |
-
return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0)
|
203 |
-
|
204 |
-
def remove_parametrizations(self):
|
205 |
-
for block in self.blocks:
|
206 |
-
block.remove_parametrizations()
|
207 |
-
|
208 |
-
|
209 |
-
class HiFiGANGenerator(nn.Module):
|
210 |
-
def __init__(
|
211 |
-
self,
|
212 |
-
*,
|
213 |
-
hop_length: int = 512,
|
214 |
-
upsample_rates: tuple[int] = (8, 8, 2, 2, 2),
|
215 |
-
upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2),
|
216 |
-
resblock_kernel_sizes: tuple[int] = (3, 7, 11),
|
217 |
-
resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
218 |
-
num_mels: int = 128,
|
219 |
-
upsample_initial_channel: int = 512,
|
220 |
-
pre_conv_kernel_size: int = 7,
|
221 |
-
post_conv_kernel_size: int = 7,
|
222 |
-
post_activation: Callable = partial(nn.SiLU, inplace=True),
|
223 |
-
):
|
224 |
-
super().__init__()
|
225 |
-
|
226 |
-
assert (
|
227 |
-
prod(upsample_rates) == hop_length
|
228 |
-
), f"hop_length must be {prod(upsample_rates)}"
|
229 |
-
|
230 |
-
self.conv_pre = FishConvNet(
|
231 |
-
num_mels,
|
232 |
-
upsample_initial_channel,
|
233 |
-
pre_conv_kernel_size,
|
234 |
-
stride=1,
|
235 |
-
).weight_norm()
|
236 |
-
|
237 |
-
self.num_upsamples = len(upsample_rates)
|
238 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
239 |
-
|
240 |
-
self.noise_convs = nn.ModuleList()
|
241 |
-
self.ups = nn.ModuleList()
|
242 |
-
|
243 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
244 |
-
self.ups.append(
|
245 |
-
FishTransConvNet(
|
246 |
-
upsample_initial_channel // (2**i),
|
247 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
248 |
-
k,
|
249 |
-
stride=u,
|
250 |
-
).weight_norm()
|
251 |
-
)
|
252 |
-
|
253 |
-
self.resblocks = nn.ModuleList()
|
254 |
-
for i in range(len(self.ups)):
|
255 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
256 |
-
self.resblocks.append(
|
257 |
-
ParallelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes)
|
258 |
-
)
|
259 |
-
|
260 |
-
self.activation_post = post_activation()
|
261 |
-
self.conv_post = FishConvNet(
|
262 |
-
ch, 1, post_conv_kernel_size, stride=1
|
263 |
-
).weight_norm()
|
264 |
-
self.ups.apply(init_weights)
|
265 |
-
self.conv_post.apply(init_weights)
|
266 |
-
|
267 |
-
def forward(self, x):
|
268 |
-
x = self.conv_pre(x)
|
269 |
-
|
270 |
-
for i in range(self.num_upsamples):
|
271 |
-
x = F.silu(x, inplace=True)
|
272 |
-
x = self.ups[i](x)
|
273 |
-
|
274 |
-
if self.training and self.checkpointing:
|
275 |
-
x = checkpoint(
|
276 |
-
self.resblocks[i],
|
277 |
-
x,
|
278 |
-
use_reentrant=False,
|
279 |
-
)
|
280 |
-
else:
|
281 |
-
x = self.resblocks[i](x)
|
282 |
-
|
283 |
-
x = self.activation_post(x)
|
284 |
-
x = self.conv_post(x)
|
285 |
-
x = torch.tanh(x)
|
286 |
-
|
287 |
-
return x
|
288 |
-
|
289 |
-
def remove_parametrizations(self):
|
290 |
-
for up in self.ups:
|
291 |
-
remove_parametrizations(up, tensor_name="weight")
|
292 |
-
for block in self.resblocks:
|
293 |
-
block.remove_parametrizations()
|
294 |
-
remove_parametrizations(self.conv_pre, tensor_name="weight")
|
295 |
-
remove_parametrizations(self.conv_post, tensor_name="weight")
|
296 |
-
|
297 |
-
|
298 |
-
# DropPath copied from timm library
|
299 |
-
def drop_path(
|
300 |
-
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
|
301 |
-
):
|
302 |
-
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
303 |
-
|
304 |
-
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
305 |
-
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
306 |
-
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
307 |
-
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
308 |
-
'survival rate' as the argument.
|
309 |
-
|
310 |
-
""" # noqa: E501
|
311 |
-
|
312 |
-
if drop_prob == 0.0 or not training:
|
313 |
-
return x
|
314 |
-
keep_prob = 1 - drop_prob
|
315 |
-
shape = (x.shape[0],) + (1,) * (
|
316 |
-
x.ndim - 1
|
317 |
-
) # work with diff dim tensors, not just 2D ConvNets
|
318 |
-
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
319 |
-
if keep_prob > 0.0 and scale_by_keep:
|
320 |
-
random_tensor.div_(keep_prob)
|
321 |
-
return x * random_tensor
|
322 |
-
|
323 |
-
|
324 |
-
class DropPath(nn.Module):
|
325 |
-
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
|
326 |
-
|
327 |
-
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
|
328 |
-
super(DropPath, self).__init__()
|
329 |
-
self.drop_prob = drop_prob
|
330 |
-
self.scale_by_keep = scale_by_keep
|
331 |
-
|
332 |
-
def forward(self, x):
|
333 |
-
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
334 |
-
|
335 |
-
def extra_repr(self):
|
336 |
-
return f"drop_prob={round(self.drop_prob,3):0.3f}"
|
337 |
-
|
338 |
-
|
339 |
-
class LayerNorm(nn.Module):
|
340 |
-
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
341 |
-
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
342 |
-
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
343 |
-
with shape (batch_size, channels, height, width).
|
344 |
-
""" # noqa: E501
|
345 |
-
|
346 |
-
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
347 |
-
super().__init__()
|
348 |
-
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
349 |
-
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
350 |
-
self.eps = eps
|
351 |
-
self.data_format = data_format
|
352 |
-
if self.data_format not in ["channels_last", "channels_first"]:
|
353 |
-
raise NotImplementedError
|
354 |
-
self.normalized_shape = (normalized_shape,)
|
355 |
-
|
356 |
-
def forward(self, x):
|
357 |
-
if self.data_format == "channels_last":
|
358 |
-
return F.layer_norm(
|
359 |
-
x, self.normalized_shape, self.weight, self.bias, self.eps
|
360 |
-
)
|
361 |
-
elif self.data_format == "channels_first":
|
362 |
-
u = x.mean(1, keepdim=True)
|
363 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
364 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
365 |
-
x = self.weight[:, None] * x + self.bias[:, None]
|
366 |
-
return x
|
367 |
-
|
368 |
-
|
369 |
-
# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
|
370 |
-
class ConvNeXtBlock(nn.Module):
|
371 |
-
r"""ConvNeXt Block. There are two equivalent implementations:
|
372 |
-
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
373 |
-
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
374 |
-
We use (2) as we find it slightly faster in PyTorch
|
375 |
-
|
376 |
-
Args:
|
377 |
-
dim (int): Number of input channels.
|
378 |
-
drop_path (float): Stochastic depth rate. Default: 0.0
|
379 |
-
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
380 |
-
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
|
381 |
-
kernel_size (int): Kernel size for depthwise conv. Default: 7.
|
382 |
-
dilation (int): Dilation for depthwise conv. Default: 1.
|
383 |
-
""" # noqa: E501
|
384 |
-
|
385 |
-
def __init__(
|
386 |
-
self,
|
387 |
-
dim: int,
|
388 |
-
drop_path: float = 0.0,
|
389 |
-
layer_scale_init_value: float = 1e-6,
|
390 |
-
mlp_ratio: float = 4.0,
|
391 |
-
kernel_size: int = 7,
|
392 |
-
dilation: int = 1,
|
393 |
-
):
|
394 |
-
super().__init__()
|
395 |
-
|
396 |
-
self.dwconv = FishConvNet(
|
397 |
-
dim,
|
398 |
-
dim,
|
399 |
-
kernel_size=kernel_size,
|
400 |
-
# padding=int(dilation * (kernel_size - 1) / 2),
|
401 |
-
groups=dim,
|
402 |
-
) # depthwise conv
|
403 |
-
self.norm = LayerNorm(dim, eps=1e-6)
|
404 |
-
self.pwconv1 = nn.Linear(
|
405 |
-
dim, int(mlp_ratio * dim)
|
406 |
-
) # pointwise/1x1 convs, implemented with linear layers
|
407 |
-
self.act = nn.GELU()
|
408 |
-
self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
|
409 |
-
self.gamma = (
|
410 |
-
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
411 |
-
if layer_scale_init_value > 0
|
412 |
-
else None
|
413 |
-
)
|
414 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
415 |
-
|
416 |
-
def forward(self, x, apply_residual: bool = True):
|
417 |
-
input = x
|
418 |
-
|
419 |
-
x = self.dwconv(x)
|
420 |
-
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
|
421 |
-
x = self.norm(x)
|
422 |
-
x = self.pwconv1(x)
|
423 |
-
x = self.act(x)
|
424 |
-
x = self.pwconv2(x)
|
425 |
-
|
426 |
-
if self.gamma is not None:
|
427 |
-
x = self.gamma * x
|
428 |
-
|
429 |
-
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
|
430 |
-
x = self.drop_path(x)
|
431 |
-
|
432 |
-
if apply_residual:
|
433 |
-
x = input + x
|
434 |
-
|
435 |
-
return x
|
436 |
-
|
437 |
-
|
438 |
-
class ConvNeXtEncoder(nn.Module):
|
439 |
-
def __init__(
|
440 |
-
self,
|
441 |
-
input_channels: int = 3,
|
442 |
-
depths: list[int] = [3, 3, 9, 3],
|
443 |
-
dims: list[int] = [96, 192, 384, 768],
|
444 |
-
drop_path_rate: float = 0.0,
|
445 |
-
layer_scale_init_value: float = 1e-6,
|
446 |
-
kernel_size: int = 7,
|
447 |
-
):
|
448 |
-
super().__init__()
|
449 |
-
assert len(depths) == len(dims)
|
450 |
-
|
451 |
-
self.downsample_layers = nn.ModuleList()
|
452 |
-
stem = nn.Sequential(
|
453 |
-
FishConvNet(
|
454 |
-
input_channels,
|
455 |
-
dims[0],
|
456 |
-
kernel_size=7,
|
457 |
-
# padding=3,
|
458 |
-
# padding_mode="replicate",
|
459 |
-
# padding_mode="zeros",
|
460 |
-
),
|
461 |
-
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
|
462 |
-
)
|
463 |
-
self.downsample_layers.append(stem)
|
464 |
-
|
465 |
-
for i in range(len(depths) - 1):
|
466 |
-
mid_layer = nn.Sequential(
|
467 |
-
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
468 |
-
nn.Conv1d(dims[i], dims[i + 1], kernel_size=1),
|
469 |
-
)
|
470 |
-
self.downsample_layers.append(mid_layer)
|
471 |
-
|
472 |
-
self.stages = nn.ModuleList()
|
473 |
-
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
474 |
-
|
475 |
-
cur = 0
|
476 |
-
for i in range(len(depths)):
|
477 |
-
stage = nn.Sequential(
|
478 |
-
*[
|
479 |
-
ConvNeXtBlock(
|
480 |
-
dim=dims[i],
|
481 |
-
drop_path=dp_rates[cur + j],
|
482 |
-
layer_scale_init_value=layer_scale_init_value,
|
483 |
-
kernel_size=kernel_size,
|
484 |
-
)
|
485 |
-
for j in range(depths[i])
|
486 |
-
]
|
487 |
-
)
|
488 |
-
self.stages.append(stage)
|
489 |
-
cur += depths[i]
|
490 |
-
|
491 |
-
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
|
492 |
-
self.apply(self._init_weights)
|
493 |
-
|
494 |
-
def _init_weights(self, m):
|
495 |
-
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
496 |
-
nn.init.trunc_normal_(m.weight, std=0.02)
|
497 |
-
nn.init.constant_(m.bias, 0)
|
498 |
-
|
499 |
-
def forward(
|
500 |
-
self,
|
501 |
-
x: torch.Tensor,
|
502 |
-
) -> torch.Tensor:
|
503 |
-
for i in range(len(self.downsample_layers)):
|
504 |
-
x = self.downsample_layers[i](x)
|
505 |
-
x = self.stages[i](x)
|
506 |
-
|
507 |
-
return self.norm(x)
|
508 |
-
|
509 |
-
|
510 |
-
class FireflyArchitecture(nn.Module):
|
511 |
-
def __init__(
|
512 |
-
self,
|
513 |
-
backbone: nn.Module,
|
514 |
-
head: nn.Module,
|
515 |
-
quantizer: nn.Module,
|
516 |
-
spec_transform: nn.Module,
|
517 |
-
):
|
518 |
-
super().__init__()
|
519 |
-
|
520 |
-
self.backbone = backbone
|
521 |
-
self.head = head
|
522 |
-
self.quantizer = quantizer
|
523 |
-
self.spec_transform = spec_transform
|
524 |
-
self.downsample_factor = math.prod(self.quantizer.downsample_factor)
|
525 |
-
|
526 |
-
def forward(self, x: torch.Tensor, template=None, mask=None) -> torch.Tensor:
|
527 |
-
if self.spec_transform is not None:
|
528 |
-
x = self.spec_transform(x)
|
529 |
-
|
530 |
-
x = self.backbone(x)
|
531 |
-
if mask is not None:
|
532 |
-
x = x * mask
|
533 |
-
|
534 |
-
if self.quantizer is not None:
|
535 |
-
vq_result = self.quantizer(x)
|
536 |
-
x = vq_result.z
|
537 |
-
|
538 |
-
if mask is not None:
|
539 |
-
x = x * mask
|
540 |
-
|
541 |
-
x = self.head(x, template=template)
|
542 |
-
|
543 |
-
if x.ndim == 2:
|
544 |
-
x = x[:, None, :]
|
545 |
-
|
546 |
-
if self.vq is not None:
|
547 |
-
return x, vq_result
|
548 |
-
|
549 |
-
return x
|
550 |
-
|
551 |
-
def encode(self, audios, audio_lengths):
|
552 |
-
audios = audios.float()
|
553 |
-
|
554 |
-
mels = self.spec_transform(audios)
|
555 |
-
mel_lengths = audio_lengths // self.spec_transform.hop_length
|
556 |
-
mel_masks = sequence_mask(mel_lengths, mels.shape[2])
|
557 |
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
558 |
-
mels = mels * mel_masks_float_conv
|
559 |
-
|
560 |
-
# Encode
|
561 |
-
encoded_features = self.backbone(mels) * mel_masks_float_conv
|
562 |
-
feature_lengths = mel_lengths // self.downsample_factor
|
563 |
-
|
564 |
-
return self.quantizer.encode(encoded_features), feature_lengths
|
565 |
-
|
566 |
-
def decode(self, indices, feature_lengths) -> torch.Tensor:
|
567 |
-
mel_masks = sequence_mask(
|
568 |
-
feature_lengths * self.downsample_factor,
|
569 |
-
indices.shape[2] * self.downsample_factor,
|
570 |
-
)
|
571 |
-
mel_masks_float_conv = mel_masks[:, None, :].float()
|
572 |
-
audio_lengths = (
|
573 |
-
feature_lengths * self.downsample_factor * self.spec_transform.hop_length
|
574 |
-
)
|
575 |
-
|
576 |
-
audio_masks = sequence_mask(
|
577 |
-
audio_lengths,
|
578 |
-
indices.shape[2] * self.downsample_factor * self.spec_transform.hop_length,
|
579 |
-
)
|
580 |
-
audio_masks_float_conv = audio_masks[:, None, :].float()
|
581 |
-
|
582 |
-
z = self.quantizer.decode(indices) * mel_masks_float_conv
|
583 |
-
x = self.head(z) * audio_masks_float_conv
|
584 |
-
|
585 |
-
return x, audio_lengths
|
586 |
-
|
587 |
-
def remove_parametrizations(self):
|
588 |
-
if hasattr(self.backbone, "remove_parametrizations"):
|
589 |
-
self.backbone.remove_parametrizations()
|
590 |
-
|
591 |
-
if hasattr(self.head, "remove_parametrizations"):
|
592 |
-
self.head.remove_parametrizations()
|
593 |
-
|
594 |
-
@property
|
595 |
-
def device(self):
|
596 |
-
return next(self.parameters()).device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/vqgan/modules/fsq.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from einops import rearrange
|
7 |
-
from vector_quantize_pytorch import GroupedResidualFSQ
|
8 |
-
|
9 |
-
from .firefly import ConvNeXtBlock, FishConvNet, FishTransConvNet
|
10 |
-
|
11 |
-
|
12 |
-
@dataclass
|
13 |
-
class FSQResult:
|
14 |
-
z: torch.Tensor
|
15 |
-
codes: torch.Tensor
|
16 |
-
latents: torch.Tensor
|
17 |
-
|
18 |
-
|
19 |
-
class DownsampleFiniteScalarQuantize(nn.Module):
|
20 |
-
def __init__(
|
21 |
-
self,
|
22 |
-
input_dim: int = 512,
|
23 |
-
n_codebooks: int = 9,
|
24 |
-
n_groups: int = 1,
|
25 |
-
levels: tuple[int] = (8, 5, 5, 5), # Approximate 2**10
|
26 |
-
downsample_factor: tuple[int] = (2, 2),
|
27 |
-
downsample_dims: tuple[int] | None = None,
|
28 |
-
):
|
29 |
-
super().__init__()
|
30 |
-
|
31 |
-
if downsample_dims is None:
|
32 |
-
downsample_dims = [input_dim for _ in range(len(downsample_factor))]
|
33 |
-
|
34 |
-
all_dims = (input_dim,) + tuple(downsample_dims)
|
35 |
-
|
36 |
-
self.residual_fsq = GroupedResidualFSQ(
|
37 |
-
dim=all_dims[-1],
|
38 |
-
levels=levels,
|
39 |
-
num_quantizers=n_codebooks,
|
40 |
-
groups=n_groups,
|
41 |
-
)
|
42 |
-
|
43 |
-
self.downsample_factor = downsample_factor
|
44 |
-
self.downsample_dims = downsample_dims
|
45 |
-
|
46 |
-
self.downsample = nn.Sequential(
|
47 |
-
*[
|
48 |
-
nn.Sequential(
|
49 |
-
FishConvNet(
|
50 |
-
all_dims[idx],
|
51 |
-
all_dims[idx + 1],
|
52 |
-
kernel_size=factor,
|
53 |
-
stride=factor,
|
54 |
-
),
|
55 |
-
ConvNeXtBlock(dim=all_dims[idx + 1]),
|
56 |
-
)
|
57 |
-
for idx, factor in enumerate(downsample_factor)
|
58 |
-
]
|
59 |
-
)
|
60 |
-
|
61 |
-
self.upsample = nn.Sequential(
|
62 |
-
*[
|
63 |
-
nn.Sequential(
|
64 |
-
FishTransConvNet(
|
65 |
-
all_dims[idx + 1],
|
66 |
-
all_dims[idx],
|
67 |
-
kernel_size=factor,
|
68 |
-
stride=factor,
|
69 |
-
),
|
70 |
-
ConvNeXtBlock(dim=all_dims[idx]),
|
71 |
-
)
|
72 |
-
for idx, factor in reversed(list(enumerate(downsample_factor)))
|
73 |
-
]
|
74 |
-
)
|
75 |
-
|
76 |
-
self.apply(self._init_weights)
|
77 |
-
|
78 |
-
def _init_weights(self, m):
|
79 |
-
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
80 |
-
nn.init.trunc_normal_(m.weight, std=0.02)
|
81 |
-
nn.init.constant_(m.bias, 0)
|
82 |
-
|
83 |
-
def forward(self, z) -> FSQResult:
|
84 |
-
original_shape = z.shape
|
85 |
-
z = self.downsample(z)
|
86 |
-
quantized, indices = self.residual_fsq(z.mT)
|
87 |
-
result = FSQResult(
|
88 |
-
z=quantized.mT,
|
89 |
-
codes=indices.mT,
|
90 |
-
latents=z,
|
91 |
-
)
|
92 |
-
result.z = self.upsample(result.z)
|
93 |
-
|
94 |
-
# Pad or crop z to match original shape
|
95 |
-
diff = original_shape[-1] - result.z.shape[-1]
|
96 |
-
left = diff // 2
|
97 |
-
right = diff - left
|
98 |
-
|
99 |
-
if diff > 0:
|
100 |
-
result.z = F.pad(result.z, (left, right))
|
101 |
-
elif diff < 0:
|
102 |
-
result.z = result.z[..., left:-right]
|
103 |
-
|
104 |
-
return result
|
105 |
-
|
106 |
-
def encode(self, z):
|
107 |
-
z = self.downsample(z)
|
108 |
-
_, indices = self.residual_fsq(z.mT)
|
109 |
-
indices = rearrange(indices, "g b l r -> b (g r) l")
|
110 |
-
return indices
|
111 |
-
|
112 |
-
def decode(self, indices: torch.Tensor):
|
113 |
-
indices = rearrange(indices, "b (g r) l -> g b l r", g=self.residual_fsq.groups)
|
114 |
-
z_q = self.residual_fsq.get_output_from_indices(indices)
|
115 |
-
z_q = self.upsample(z_q.mT)
|
116 |
-
return z_q
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/models/vqgan/utils.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
import matplotlib
|
2 |
-
import torch
|
3 |
-
from matplotlib import pyplot as plt
|
4 |
-
|
5 |
-
matplotlib.use("Agg")
|
6 |
-
|
7 |
-
|
8 |
-
def convert_pad_shape(pad_shape):
|
9 |
-
l = pad_shape[::-1]
|
10 |
-
pad_shape = [item for sublist in l for item in sublist]
|
11 |
-
return pad_shape
|
12 |
-
|
13 |
-
|
14 |
-
def sequence_mask(length, max_length=None):
|
15 |
-
if max_length is None:
|
16 |
-
max_length = length.max()
|
17 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
18 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
19 |
-
|
20 |
-
|
21 |
-
def init_weights(m, mean=0.0, std=0.01):
|
22 |
-
classname = m.__class__.__name__
|
23 |
-
if classname.find("Conv") != -1:
|
24 |
-
m.weight.data.normal_(mean, std)
|
25 |
-
|
26 |
-
|
27 |
-
def get_padding(kernel_size, dilation=1):
|
28 |
-
return int((kernel_size * dilation - dilation) / 2)
|
29 |
-
|
30 |
-
|
31 |
-
def plot_mel(data, titles=None):
|
32 |
-
fig, axes = plt.subplots(len(data), 1, squeeze=False)
|
33 |
-
|
34 |
-
if titles is None:
|
35 |
-
titles = [None for i in range(len(data))]
|
36 |
-
|
37 |
-
plt.tight_layout()
|
38 |
-
|
39 |
-
for i in range(len(data)):
|
40 |
-
mel = data[i]
|
41 |
-
|
42 |
-
if isinstance(mel, torch.Tensor):
|
43 |
-
mel = mel.float().detach().cpu().numpy()
|
44 |
-
|
45 |
-
axes[i][0].imshow(mel, origin="lower")
|
46 |
-
axes[i][0].set_aspect(2.5, adjustable="box")
|
47 |
-
axes[i][0].set_ylim(0, mel.shape[0])
|
48 |
-
axes[i][0].set_title(titles[i], fontsize="medium")
|
49 |
-
axes[i][0].tick_params(labelsize="x-small", left=False, labelleft=False)
|
50 |
-
axes[i][0].set_anchor("W")
|
51 |
-
|
52 |
-
return fig
|
53 |
-
|
54 |
-
|
55 |
-
def slice_segments(x, ids_str, segment_size=4):
|
56 |
-
ret = torch.zeros_like(x[:, :, :segment_size])
|
57 |
-
for i in range(x.size(0)):
|
58 |
-
idx_str = ids_str[i]
|
59 |
-
idx_end = idx_str + segment_size
|
60 |
-
ret[i] = x[i, :, idx_str:idx_end]
|
61 |
-
|
62 |
-
return ret
|
63 |
-
|
64 |
-
|
65 |
-
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
66 |
-
b, d, t = x.size()
|
67 |
-
if x_lengths is None:
|
68 |
-
x_lengths = t
|
69 |
-
ids_str_max = torch.clamp(x_lengths - segment_size + 1, min=0)
|
70 |
-
ids_str = (torch.rand([b], device=x.device) * ids_str_max).to(dtype=torch.long)
|
71 |
-
ret = slice_segments(x, ids_str, segment_size)
|
72 |
-
return ret, ids_str
|
73 |
-
|
74 |
-
|
75 |
-
@torch.jit.script
|
76 |
-
def fused_add_tanh_sigmoid_multiply(in_act, n_channels):
|
77 |
-
n_channels_int = n_channels[0]
|
78 |
-
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
79 |
-
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
80 |
-
acts = t_act * s_act
|
81 |
-
|
82 |
-
return acts
|
83 |
-
|
84 |
-
|
85 |
-
def avg_with_mask(x, mask):
|
86 |
-
assert mask.dtype == torch.float, "Mask should be float"
|
87 |
-
|
88 |
-
if mask.ndim == 2:
|
89 |
-
mask = mask.unsqueeze(1)
|
90 |
-
|
91 |
-
if mask.shape[1] == 1:
|
92 |
-
mask = mask.expand_as(x)
|
93 |
-
|
94 |
-
return (x * mask).sum() / mask.sum()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/scheduler.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
|
3 |
-
|
4 |
-
def get_cosine_schedule_with_warmup_lr_lambda(
|
5 |
-
current_step: int,
|
6 |
-
*,
|
7 |
-
num_warmup_steps: int | float,
|
8 |
-
num_training_steps: int,
|
9 |
-
num_cycles: float = 0.5,
|
10 |
-
final_lr_ratio: float = 0.0,
|
11 |
-
):
|
12 |
-
if 0 < num_warmup_steps < 1: # float mode
|
13 |
-
num_warmup_steps = int(num_warmup_steps * num_training_steps)
|
14 |
-
|
15 |
-
if current_step < num_warmup_steps:
|
16 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
17 |
-
|
18 |
-
progress = float(current_step - num_warmup_steps) / float(
|
19 |
-
max(1, num_training_steps - num_warmup_steps)
|
20 |
-
)
|
21 |
-
|
22 |
-
return max(
|
23 |
-
final_lr_ratio,
|
24 |
-
0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)),
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
def get_constant_schedule_with_warmup_lr_lambda(
|
29 |
-
current_step: int,
|
30 |
-
*,
|
31 |
-
num_warmup_steps: int | float,
|
32 |
-
num_training_steps: int | None = None,
|
33 |
-
):
|
34 |
-
if 0 < num_warmup_steps < 1: # float mode
|
35 |
-
num_warmup_steps = int(num_warmup_steps * num_training_steps)
|
36 |
-
|
37 |
-
if current_step < num_warmup_steps:
|
38 |
-
return float(current_step) / float(max(1, num_warmup_steps))
|
39 |
-
|
40 |
-
return 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fish_speech/text/__init__.py
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
from .clean import clean_text
|
2 |
-
from .spliter import split_text
|
3 |
-
|
4 |
-
__all__ = ["clean_text", "split_text"]
|
|
|
|
|
|
|
|
|
|
fish_speech/text/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (274 Bytes)
|
|
fish_speech/text/__pycache__/clean.cpython-310.pyc
DELETED
Binary file (840 Bytes)
|
|