Spaces:
Sleeping
Sleeping
File size: 2,680 Bytes
49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 49d537b 77e8f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import os
import torch
from argparse import ArgumentParser
from loguru import logger
from tools.llama.generate import launch_thread_safe_queue
from tools.vqgan.inference import load_model as load_decoder_model
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.4-sft-yth-lora",
help="Path to the Llama checkpoint"
)
parser.add_argument(
"--decoder-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
help="Path to the VQ-GAN checkpoint"
)
parser.add_argument(
"--decoder-config-name",
type=str,
default="firefly_gan_vq",
help="VQ-GAN config name"
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Device to run on (cpu or cuda)"
)
parser.add_argument(
"--half",
action="store_true",
help="Use half precision"
)
parser.add_argument(
"--compile",
action="store_true",
default=True,
help="Compile the model for optimized inference"
)
parser.add_argument(
"--max-gradio-length",
type=int,
default=0,
help="Maximum length for Gradio input"
)
parser.add_argument(
"--theme",
type=str,
default="light",
help="Theme for the Gradio app"
)
return parser.parse_args()
def main():
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("Decoder model loaded, warming up...")
# Perform a dry run to warm up the model
inference(
text="Hello, world!",
enable_reference_audio=False,
reference_audio=None,
reference_text="",
max_new_tokens=0,
chunk_length=100,
top_p=0.7,
repetition_penalty=1.2,
temperature=0.7,
)
logger.info("Warming up done, launching the web UI...")
# Launch the Gradio app
app = build_app()
app.launch(show_api=True)
if __name__ == "__main__":
main()
|