# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan

from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import AudioLDMPipeline
        >>> import torch
        >>> import scipy

        >>> repo_id = "cvssp/audioldm-s-full-v2"
        >>> pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"
        >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]

        >>> # save the audio sample as a .wav file
        >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
        ```
"""


class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin):
    r"""
    Pipeline for text-to-audio generation using AudioLDM.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.ClapTextModelWithProjection`]):
            Frozen text-encoder (`ClapTextModelWithProjection`, specifically the
            [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant.
        tokenizer ([`PreTrainedTokenizer`]):
            A [`~transformers.RobertaTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded audio latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        vocoder ([`~transformers.SpeechT5HifiGan`]):
            Vocoder of class `SpeechT5HifiGan`.
    """

    model_cpu_offload_seq = "text_encoder->unet->vae"

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: ClapTextModelWithProjection,
        tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        vocoder: SpeechT5HifiGan,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            vocoder=vocoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def _encode_prompt(
        self,
        prompt,
        device,
        num_waveforms_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device (`torch.device`):
                torch device
            num_waveforms_per_prompt (`int`):
                number of waveforms that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the audio generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            attention_mask = text_inputs.attention_mask
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLAP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask.to(device),
            )
            prompt_embeds = prompt_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            prompt_embeds = F.normalize(prompt_embeds, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        (
            bs_embed,
            seq_len,
        ) = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt)
        prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            uncond_input_ids = uncond_input.input_ids.to(device)
            attention_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder(
                uncond_input_ids,
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        mel_spectrogram = self.vae.decode(latents).sample
        return mel_spectrogram

    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        if mel_spectrogram.dim() == 4:
            mel_spectrogram = mel_spectrogram.squeeze(1)

        waveform = self.vocoder(mel_spectrogram)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        waveform = waveform.cpu().float()
        return waveform

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        audio_length_in_s,
        vocoder_upsample_factor,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
        if audio_length_in_s < min_audio_length_in_s:
            raise ValueError(
                f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
                f"is {audio_length_in_s}."
            )

        if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
            raise ValueError(
                f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
                f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
                f"{self.vae_scale_factor}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
    def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(self.vocoder.config.model_in_dim) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        audio_length_in_s: Optional[float] = None,
        num_inference_steps: int = 10,
        guidance_scale: float = 2.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_waveforms_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        output_type: Optional[str] = "np",
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
            audio_length_in_s (`int`, *optional*, defaults to 5.12):
                The length of the generated audio sample in seconds.
            num_inference_steps (`int`, *optional*, defaults to 10):
                The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 2.5):
                A higher guidance scale value encourages the model to generate audio that is closely linked to the text
                `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
                The number of waveforms to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            output_type (`str`, *optional*, defaults to `"np"`):
                The output format of the generated image. Choose between `"np"` to return a NumPy `np.ndarray` or
                `"pt"` to return a PyTorch `torch.Tensor` object.

        Examples:

        Returns:
            [`~pipelines.AudioPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated audio.
        """
        # 0. Convert audio input length from seconds to spectrogram height
        vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate

        if audio_length_in_s is None:
            audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor

        height = int(audio_length_in_s / vocoder_upsample_factor)

        original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
        if height % self.vae_scale_factor != 0:
            height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
            logger.info(
                f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
                f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
                f"denoising process."
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            audio_length_in_s,
            vocoder_upsample_factor,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_waveforms_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_waveforms_per_prompt,
            num_channels_latents,
            height,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=None,
                    class_labels=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        # 8. Post-processing
        mel_spectrogram = self.decode_latents(latents)

        audio = self.mel_spectrogram_to_waveform(mel_spectrogram)

        audio = audio[:, :original_waveform_length]

        if output_type == "np":
            audio = audio.numpy()

        if not return_dict:
            return (audio,)

        return AudioPipelineOutput(audios=audio)