File size: 6,127 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from math import pi
from typing import Optional

import torch
import torch.nn as nn
import torch.utils.checkpoint

from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
from ...utils import BaseOutput, logging


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class StableAudioPositionalEmbedding(nn.Module):
    """Used for continuous time"""

    def __init__(self, dim: int):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.randn(half_dim))

    def forward(self, times: torch.Tensor) -> torch.Tensor:
        times = times[..., None]
        freqs = times * self.weights[None] * 2 * pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((times, fouriered), dim=-1)
        return fouriered


@dataclass
class StableAudioProjectionModelOutput(BaseOutput):
    """
    Args:
    Class for StableAudio projection layer's outputs.
        text_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states obtained by linearly projecting the hidden-states for the text encoder.
        seconds_start_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
            Sequence of hidden-states obtained by linearly projecting the audio start hidden states.
        seconds_end_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
            Sequence of hidden-states obtained by linearly projecting the audio end hidden states.
    """

    text_hidden_states: Optional[torch.Tensor] = None
    seconds_start_hidden_states: Optional[torch.Tensor] = None
    seconds_end_hidden_states: Optional[torch.Tensor] = None


class StableAudioNumberConditioner(nn.Module):
    """
    A simple linear projection model to map numbers to a latent space.

    Args:
        number_embedding_dim (`int`):
            Dimensionality of the number embeddings.
        min_value (`int`):
            The minimum value of the seconds number conditioning modules.
        max_value (`int`):
            The maximum value of the seconds number conditioning modules
        internal_dim (`int`):
            Dimensionality of the intermediate number hidden states.
    """

    def __init__(
        self,
        number_embedding_dim,
        min_value,
        max_value,
        internal_dim: Optional[int] = 256,
    ):
        super().__init__()
        self.time_positional_embedding = nn.Sequential(
            StableAudioPositionalEmbedding(internal_dim),
            nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
        )

        self.number_embedding_dim = number_embedding_dim
        self.min_value = min_value
        self.max_value = max_value

    def forward(
        self,
        floats: torch.Tensor,
    ):
        floats = floats.clamp(self.min_value, self.max_value)

        normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)

        # Cast floats to same type as embedder
        embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
        normalized_floats = normalized_floats.to(embedder_dtype)

        embedding = self.time_positional_embedding(normalized_floats)
        float_embeds = embedding.view(-1, 1, self.number_embedding_dim)

        return float_embeds


class StableAudioProjectionModel(ModelMixin, ConfigMixin):
    """
    A simple linear projection model to map the conditioning values to a shared latent space.

    Args:
        text_encoder_dim (`int`):
            Dimensionality of the text embeddings from the text encoder (T5).
        conditioning_dim (`int`):
            Dimensionality of the output conditioning tensors.
        min_value (`int`):
            The minimum value of the seconds number conditioning modules.
        max_value (`int`):
            The maximum value of the seconds number conditioning modules
    """

    @register_to_config
    def __init__(self, text_encoder_dim, conditioning_dim, min_value, max_value):
        super().__init__()
        self.text_projection = (
            nn.Identity() if conditioning_dim == text_encoder_dim else nn.Linear(text_encoder_dim, conditioning_dim)
        )
        self.start_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
        self.end_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)

    def forward(
        self,
        text_hidden_states: Optional[torch.Tensor] = None,
        start_seconds: Optional[torch.Tensor] = None,
        end_seconds: Optional[torch.Tensor] = None,
    ):
        text_hidden_states = (
            text_hidden_states if text_hidden_states is None else self.text_projection(text_hidden_states)
        )
        seconds_start_hidden_states = (
            start_seconds if start_seconds is None else self.start_number_conditioner(start_seconds)
        )
        seconds_end_hidden_states = end_seconds if end_seconds is None else self.end_number_conditioner(end_seconds)

        return StableAudioProjectionModelOutput(
            text_hidden_states=text_hidden_states,
            seconds_start_hidden_states=seconds_start_hidden_states,
            seconds_end_hidden_states=seconds_end_hidden_states,
        )