Spaces:
Running
Running
File size: 6,127 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from math import pi
from typing import Optional
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
from ...utils import BaseOutput, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StableAudioPositionalEmbedding(nn.Module):
"""Used for continuous time"""
def __init__(self, dim: int):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, times: torch.Tensor) -> torch.Tensor:
times = times[..., None]
freqs = times * self.weights[None] * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((times, fouriered), dim=-1)
return fouriered
@dataclass
class StableAudioProjectionModelOutput(BaseOutput):
"""
Args:
Class for StableAudio projection layer's outputs.
text_hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states obtained by linearly projecting the hidden-states for the text encoder.
seconds_start_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
Sequence of hidden-states obtained by linearly projecting the audio start hidden states.
seconds_end_hidden_states (`torch.Tensor` of shape `(batch_size, 1, hidden_size)`, *optional*):
Sequence of hidden-states obtained by linearly projecting the audio end hidden states.
"""
text_hidden_states: Optional[torch.Tensor] = None
seconds_start_hidden_states: Optional[torch.Tensor] = None
seconds_end_hidden_states: Optional[torch.Tensor] = None
class StableAudioNumberConditioner(nn.Module):
"""
A simple linear projection model to map numbers to a latent space.
Args:
number_embedding_dim (`int`):
Dimensionality of the number embeddings.
min_value (`int`):
The minimum value of the seconds number conditioning modules.
max_value (`int`):
The maximum value of the seconds number conditioning modules
internal_dim (`int`):
Dimensionality of the intermediate number hidden states.
"""
def __init__(
self,
number_embedding_dim,
min_value,
max_value,
internal_dim: Optional[int] = 256,
):
super().__init__()
self.time_positional_embedding = nn.Sequential(
StableAudioPositionalEmbedding(internal_dim),
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
)
self.number_embedding_dim = number_embedding_dim
self.min_value = min_value
self.max_value = max_value
def forward(
self,
floats: torch.Tensor,
):
floats = floats.clamp(self.min_value, self.max_value)
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
# Cast floats to same type as embedder
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
embedding = self.time_positional_embedding(normalized_floats)
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
return float_embeds
class StableAudioProjectionModel(ModelMixin, ConfigMixin):
"""
A simple linear projection model to map the conditioning values to a shared latent space.
Args:
text_encoder_dim (`int`):
Dimensionality of the text embeddings from the text encoder (T5).
conditioning_dim (`int`):
Dimensionality of the output conditioning tensors.
min_value (`int`):
The minimum value of the seconds number conditioning modules.
max_value (`int`):
The maximum value of the seconds number conditioning modules
"""
@register_to_config
def __init__(self, text_encoder_dim, conditioning_dim, min_value, max_value):
super().__init__()
self.text_projection = (
nn.Identity() if conditioning_dim == text_encoder_dim else nn.Linear(text_encoder_dim, conditioning_dim)
)
self.start_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
self.end_number_conditioner = StableAudioNumberConditioner(conditioning_dim, min_value, max_value)
def forward(
self,
text_hidden_states: Optional[torch.Tensor] = None,
start_seconds: Optional[torch.Tensor] = None,
end_seconds: Optional[torch.Tensor] = None,
):
text_hidden_states = (
text_hidden_states if text_hidden_states is None else self.text_projection(text_hidden_states)
)
seconds_start_hidden_states = (
start_seconds if start_seconds is None else self.start_number_conditioner(start_seconds)
)
seconds_end_hidden_states = end_seconds if end_seconds is None else self.end_number_conditioner(end_seconds)
return StableAudioProjectionModelOutput(
text_hidden_states=text_hidden_states,
seconds_start_hidden_states=seconds_start_hidden_states,
seconds_end_hidden_states=seconds_end_hidden_states,
)
|