Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from fastapi import FastAPI, File, Form, HTTPException
|
| 3 |
+
from fastapi.responses import JSONResponse
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from groq import Groq
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
# Set up the Groq client
|
| 9 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
| 10 |
+
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
# Pydantic model for the transcription result
|
| 15 |
+
class TranscriptionResponse(BaseModel):
|
| 16 |
+
transcription: str
|
| 17 |
+
|
| 18 |
+
class FeedbackResponse(BaseModel):
|
| 19 |
+
grammar_feedback: str
|
| 20 |
+
vocabulary_feedback: str
|
| 21 |
+
grammar_score: int
|
| 22 |
+
vocabulary_score: int
|
| 23 |
+
|
| 24 |
+
@app.get("/")
|
| 25 |
+
async def index():
|
| 26 |
+
return {"message": "Welcome to the Audio Transcription API!"}
|
| 27 |
+
|
| 28 |
+
@app.post("/transcribe")
|
| 29 |
+
async def transcribe_audio(audio_data: bytes = File(...), language: str = Form(...)):
|
| 30 |
+
try:
|
| 31 |
+
# Transcribe the audio based on the selected language
|
| 32 |
+
transcription = client.audio.transcriptions.create(
|
| 33 |
+
file=("audio.wav", audio_data),
|
| 34 |
+
model="whisper-large-v3",
|
| 35 |
+
prompt="Transcribe the audio accurately based on the selected language.",
|
| 36 |
+
response_format="text",
|
| 37 |
+
language=language,
|
| 38 |
+
)
|
| 39 |
+
return JSONResponse(content=TranscriptionResponse(transcription=transcription).dict())
|
| 40 |
+
except Exception as e:
|
| 41 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 42 |
+
|
| 43 |
+
@app.post("/check_grammar")
|
| 44 |
+
async def check_grammar(transcription: str = Form(...), language: str = Form(...)):
|
| 45 |
+
if not transcription or not language:
|
| 46 |
+
raise HTTPException(status_code=400, detail="Missing transcription or language selection")
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
# Grammar check
|
| 50 |
+
grammar_prompt = (
|
| 51 |
+
f"Briefly check the grammar of the following text in {language}: {transcription}. "
|
| 52 |
+
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words, "
|
| 53 |
+
"also check the grammar deeply and carefully. Provide a score from 1 to 10 based on the grammar accuracy, reducing points for incorrect words, "
|
| 54 |
+
"and make sure to output the score on a new line after two line breaks like \"SCORE=\"."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
grammar_check_response = client.chat.completions.create(
|
| 58 |
+
model="llama3-groq-70b-8192-tool-use-preview",
|
| 59 |
+
messages=[{"role": "user", "content": grammar_prompt}]
|
| 60 |
+
)
|
| 61 |
+
grammar_feedback = grammar_check_response.choices[0].message.content.strip()
|
| 62 |
+
|
| 63 |
+
# Vocabulary check
|
| 64 |
+
vocabulary_prompt = (
|
| 65 |
+
f"Check the vocabulary accuracy of the following text in {language}: {transcription}. "
|
| 66 |
+
"Identify any word that does not belong to the selected language and flag it. Based on the number of incorrect words, "
|
| 67 |
+
"also check the grammar deeply and carefully. Provide a score from 1 to 10 based on the vocabulary accuracy, reducing points for incorrect words, "
|
| 68 |
+
"and make sure to output the score on a new line after two line breaks like \"SCORE=\"."
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
vocabulary_check_response = client.chat.completions.create(
|
| 72 |
+
model="llama-3.1-70b-versatile",
|
| 73 |
+
messages=[{"role": "user", "content": vocabulary_prompt}]
|
| 74 |
+
)
|
| 75 |
+
vocabulary_feedback = vocabulary_check_response.choices[0].message.content.strip()
|
| 76 |
+
|
| 77 |
+
# Calculate scores from feedback
|
| 78 |
+
grammar_score = calculate_score(grammar_feedback)
|
| 79 |
+
vocabulary_score = calculate_score(vocabulary_feedback)
|
| 80 |
+
|
| 81 |
+
return JSONResponse(content=FeedbackResponse(
|
| 82 |
+
grammar_feedback=grammar_feedback,
|
| 83 |
+
vocabulary_feedback=vocabulary_feedback,
|
| 84 |
+
grammar_score=grammar_score,
|
| 85 |
+
vocabulary_score=vocabulary_score
|
| 86 |
+
).dict())
|
| 87 |
+
except Exception as e:
|
| 88 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 89 |
+
|
| 90 |
+
def calculate_score(feedback):
|
| 91 |
+
"""
|
| 92 |
+
Calculate score based on feedback content.
|
| 93 |
+
This function searches for the keyword 'SCORE=' or similar variations
|
| 94 |
+
(SCORE:, score:, etc.) and extracts the score value.
|
| 95 |
+
"""
|
| 96 |
+
import re
|
| 97 |
+
match = re.search(r'(SCORE=|score=|SCORE:|score:|SCORE = )\s*(\d+)', feedback)
|
| 98 |
+
|
| 99 |
+
if match:
|
| 100 |
+
# Extract and return the score as an integer
|
| 101 |
+
return int(match.group(2))
|
| 102 |
+
|
| 103 |
+
# Return a default score of 0 if no score is found in the feedback
|
| 104 |
+
return 0
|