import gradio as gr from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("uripper/GIANNIS", revision="ONNX") pipeline.to("cuda") im = pipeline(height=1,width=1,num_channels=1, num_inference_steps=1).images[0] im.show() # When a user clicks button, pipeline will generate an image # def pipeline_interface(): # pipeline.to("cuda") # return pipeline("height=100,width=100").images[0] # iface = gr.Interface(fn=pipeline_interface, inputs=[], outputs="image") # iface.launch()