Update app.py
Browse files
app.py
CHANGED
|
@@ -2,452 +2,199 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import inspect # To get source code for __repr__
|
| 5 |
-
import
|
| 6 |
-
from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional
|
| 7 |
-
|
| 8 |
-
# --- LangChain Specific Imports ---
|
| 9 |
-
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage
|
| 10 |
-
from langchain_core.tools import tool
|
| 11 |
-
from langchain_openai import ChatOpenAI
|
| 12 |
-
from langgraph.checkpoint.memory import MemorySaver
|
| 13 |
-
from langgraph.prebuilt import create_react_agent
|
| 14 |
|
| 15 |
# --- Constants ---
|
| 16 |
DEFAULT_API_URL = "http://127.0.0.1:8000" # Default URL for your FastAPI app
|
| 17 |
|
| 18 |
-
# ---
|
| 19 |
-
@tool
|
| 20 |
-
def get_lat_lng(location_description: str) -> dict[str, float]:
|
| 21 |
-
"""Get the latitude and longitude of a location."""
|
| 22 |
-
print(f"Tool: Getting lat/lng for {location_description}")
|
| 23 |
-
# Replace with actual API call in a real app
|
| 24 |
-
if "tokyo" in location_description.lower():
|
| 25 |
-
return {"lat": 35.6895, "lng": 139.6917}
|
| 26 |
-
elif "paris" in location_description.lower():
|
| 27 |
-
return {"lat": 48.8566, "lng": 2.3522}
|
| 28 |
-
elif "new york" in location_description.lower():
|
| 29 |
-
return {"lat": 40.7128, "lng": -74.0060}
|
| 30 |
-
else:
|
| 31 |
-
return {"lat": 51.5072, "lng": -0.1276} # Default London
|
| 32 |
-
|
| 33 |
-
@tool
|
| 34 |
-
def get_weather(lat: float, lng: float) -> dict[str, str]:
|
| 35 |
-
"""Get the weather at a location."""
|
| 36 |
-
print(f"Tool: Getting weather for lat={lat}, lng={lng}")
|
| 37 |
-
# Replace with actual API call in a real app
|
| 38 |
-
if lat > 45: # Northern locations
|
| 39 |
-
return {"temperature": "15°C", "description": "Cloudy"}
|
| 40 |
-
elif lat > 30: # Mid locations
|
| 41 |
-
return {"temperature": "25°C", "description": "Sunny"}
|
| 42 |
-
else: # Southern locations
|
| 43 |
-
return {"temperature": "30°C", "description": "Very Sunny"}
|
| 44 |
|
| 45 |
-
|
| 46 |
-
class MyLangChainAgent:
|
| 47 |
"""
|
| 48 |
-
A
|
| 49 |
-
|
| 50 |
-
correctly answer GAIA benchmark questions. This class structure
|
| 51 |
-
demonstrates how to integrate an agent with the submission API.
|
| 52 |
-
Replace LLM, tools, and potentially the agent type for actual GAIA tasks.
|
| 53 |
"""
|
| 54 |
-
def __init__(self
|
| 55 |
-
|
| 56 |
-
if
|
| 57 |
-
raise ValueError("OPENAI_API_KEY environment variable not set.")
|
| 58 |
-
|
| 59 |
-
self.llm = ChatOpenAI(temperature=temperature, model=model_name)
|
| 60 |
-
self.tools = [get_lat_lng, get_weather] # Use the globally defined tools
|
| 61 |
-
self.memory = MemorySaver()
|
| 62 |
-
# Create the agent executor
|
| 63 |
-
self.agent_executor = create_react_agent(self.llm, self.tools, checkpointer=self.memory)
|
| 64 |
-
print("MyLangChainAgent initialized.")
|
| 65 |
|
| 66 |
-
|
| 67 |
"""
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
Args:
|
| 71 |
-
question: The input question string.
|
| 72 |
-
thread_id: A unique identifier for the conversation thread.
|
| 73 |
-
|
| 74 |
-
Yields:
|
| 75 |
-
Intermediate steps (tool calls/results) as strings or dicts.
|
| 76 |
-
|
| 77 |
-
Returns:
|
| 78 |
-
The final AI answer as a string.
|
| 79 |
"""
|
| 80 |
-
print(f"Agent
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
async for chunk in self.agent_executor.astream_events(
|
| 86 |
-
{"messages": lc_messages},
|
| 87 |
-
config={"configurable": {"thread_id": thread_id}},
|
| 88 |
-
version="v1"
|
| 89 |
-
):
|
| 90 |
-
event = chunk["event"]
|
| 91 |
-
data = chunk["data"]
|
| 92 |
-
# print(f"DEBUG: Event: {event}, Data Keys: {data.keys()}") # Debugging line
|
| 93 |
-
|
| 94 |
-
if event == "on_chat_model_stream":
|
| 95 |
-
content = data["chunk"].content
|
| 96 |
-
if content:
|
| 97 |
-
# print(f"DEBUG: AI Chunk: {content}") # Debugging line
|
| 98 |
-
full_response_content += content
|
| 99 |
-
# Yield potentially incomplete response for live typing effect if needed
|
| 100 |
-
# yield {"type": "stream", "content": content }
|
| 101 |
-
|
| 102 |
-
elif event == "on_tool_start":
|
| 103 |
-
tool_input_str = str(data.get('input', ''))
|
| 104 |
-
yield f"🛠️ Using tool: **{data['name']}** with input: `{tool_input_str}`"
|
| 105 |
-
|
| 106 |
-
elif event == "on_tool_end":
|
| 107 |
-
tool_output_str = str(data.get('output', ''))
|
| 108 |
-
yield f"✅ Tool **{data['name']}** finished.\nResult: `{tool_output_str}`"
|
| 109 |
-
|
| 110 |
-
# Detect the end of the conversation turn (heuristic)
|
| 111 |
-
# The 'on_chain_end' event for the top-level graph might signal the end.
|
| 112 |
-
# Or check the 'messages' list in the final state if available.
|
| 113 |
-
# For create_react_agent, the final AIMessage is often the last main event.
|
| 114 |
-
# We will capture the last full AI message content after the loop.
|
| 115 |
-
|
| 116 |
-
# After iterating through all chunks, the final answer should be in full_response_content
|
| 117 |
-
final_answer = full_response_content.strip()
|
| 118 |
-
print(f"Agent execution finished. Final Answer: {final_answer[:100]}...")
|
| 119 |
-
# Yield the complete final answer distinctly if needed
|
| 120 |
-
# yield {"type": "final_answer_marker", "content": final_answer} # Example marker
|
| 121 |
-
return final_answer # Return the final answer
|
| 122 |
|
| 123 |
def __repr__(self) -> str:
|
| 124 |
"""
|
| 125 |
-
Return the source code required to reconstruct this agent
|
| 126 |
-
the class definition, tool functions, and necessary imports.
|
| 127 |
"""
|
| 128 |
imports = [
|
| 129 |
-
"import
|
| 130 |
-
"from typing import Dict, List, AsyncGenerator, Union, Tuple, Optional",
|
| 131 |
-
"from langchain_core.messages import HumanMessage, AIMessage, BaseMessage",
|
| 132 |
-
"from langchain_core.tools import tool",
|
| 133 |
-
"from langchain_openai import ChatOpenAI",
|
| 134 |
-
"from langgraph.checkpoint.memory import MemorySaver",
|
| 135 |
-
"from langgraph.prebuilt import create_react_agent",
|
| 136 |
-
"import inspect", # Needed if repr itself uses inspect dynamically
|
| 137 |
-
"import asyncio", # Needed for async call
|
| 138 |
-
"\n"
|
| 139 |
]
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
for t in self.tools:
|
| 143 |
-
try:
|
| 144 |
-
tool_sources.append(inspect.getsource(t))
|
| 145 |
-
except (TypeError, OSError) as e:
|
| 146 |
-
print(f"Warning: Could not get source for tool {t.__name__}: {e}")
|
| 147 |
-
tool_sources.append(f"# Could not automatically get source for tool: {t.__name__}\n")
|
| 148 |
-
|
| 149 |
-
# Get source code of the class itself
|
| 150 |
-
class_source = inspect.getsource(MyLangChainAgent)
|
| 151 |
-
|
| 152 |
-
# Combine imports, tools, and class definition
|
| 153 |
-
full_source = "\n".join(imports) + "\n\n" + \
|
| 154 |
-
"\n\n".join(tool_sources) + "\n\n" + \
|
| 155 |
-
class_source
|
| 156 |
return full_source
|
| 157 |
|
| 158 |
-
|
| 159 |
# --- Gradio UI and Logic ---
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# We want List[Tuple[user_msg | None, ai_msg | None]] for Chatbot
|
| 174 |
-
formatted = []
|
| 175 |
-
for turn in history:
|
| 176 |
-
formatted.append(tuple(turn))
|
| 177 |
-
return formatted
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
-
"
|
| 182 |
-
if not api_url:
|
| 183 |
-
return "Please enter the API URL.", "", "", gr.update(value=""), gr.update(value="") # Clear chat too
|
| 184 |
-
|
| 185 |
-
question_url = f"{api_url.strip('/')}/random-question"
|
| 186 |
-
print(f"Fetching question from: {question_url}")
|
| 187 |
try:
|
| 188 |
-
response = requests.get(
|
| 189 |
-
response.raise_for_status()
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
return "Question fetched successfully!", task_id, question_text, "", [] # Clears answer and chat history
|
| 197 |
-
else:
|
| 198 |
-
return "Error: Invalid data format received from API.", "", "", "", []
|
| 199 |
except requests.exceptions.RequestException as e:
|
| 200 |
-
print(f"Error fetching
|
| 201 |
-
return f"Error fetching
|
| 202 |
except Exception as e:
|
| 203 |
-
print(f"An unexpected error occurred: {e}")
|
| 204 |
-
return f"An unexpected error occurred: {e}",
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
async def run_agent_interaction(
|
| 208 |
-
message: str,
|
| 209 |
-
history: List[List[Optional[str]]],
|
| 210 |
-
current_task_id: str,
|
| 211 |
-
# agent_instance: MyLangChainAgent # Agent passed via state potentially
|
| 212 |
-
):
|
| 213 |
-
"""Handles the chat interaction, runs the agent, yields steps, updates final answer state."""
|
| 214 |
-
if agent_instance is None:
|
| 215 |
-
yield "Agent not initialized. Please check API keys and restart."
|
| 216 |
-
return
|
| 217 |
-
|
| 218 |
-
if not current_task_id:
|
| 219 |
-
yield "Please fetch a question first using the button above."
|
| 220 |
-
return
|
| 221 |
-
|
| 222 |
-
# The 'message' here is the user's latest input in the chat.
|
| 223 |
-
# For this workflow, we assume the main input is the fetched question.
|
| 224 |
-
# We'll use the fetched question (implicitly stored) to run the agent.
|
| 225 |
-
# If you want interactive chat *about* the question, the logic needs adjustment.
|
| 226 |
-
|
| 227 |
-
# For simplicity, let's assume the user's message *is* the question or a prompt related to it.
|
| 228 |
-
# In the GAIA context, usually, the agent just runs on the provided question directly.
|
| 229 |
-
# We'll use the `current_task_id` to generate a unique thread_id for LangGraph memory.
|
| 230 |
-
thread_id = f"gaia_task_{current_task_id}_{os.urandom(4).hex()}"
|
| 231 |
-
|
| 232 |
-
print(f"Running agent for user message: {message[:50]}...")
|
| 233 |
-
history.append([message, None]) # Add user message to history
|
| 234 |
-
|
| 235 |
-
final_agent_answer = None
|
| 236 |
-
full_yielded_response = ""
|
| 237 |
-
|
| 238 |
-
# Use the agent's __call__ method
|
| 239 |
-
async for step in agent_instance(message, thread_id=thread_id):
|
| 240 |
-
if isinstance(step, str):
|
| 241 |
-
# Intermediate step (tool call, result, maybe stream chunk)
|
| 242 |
-
history[-1][1] = step # Update the AI's response in the last turn
|
| 243 |
-
yield format_chat_history(history) # Update chatbot UI
|
| 244 |
-
full_yielded_response = step # Track last yielded message
|
| 245 |
-
# If __call__ yielded dicts for streaming, handle here:
|
| 246 |
-
# elif isinstance(step, dict) and step.get("type") == "stream":
|
| 247 |
-
# history[-1][1] = (history[-1][1] or "") + step["content"]
|
| 248 |
-
# yield format_chat_history(history)
|
| 249 |
-
|
| 250 |
-
# After the loop, the `step` variable holds the return value (final answer)
|
| 251 |
-
final_agent_answer = step
|
| 252 |
-
print(f"Agent final answer received: {final_agent_answer[:100]}...")
|
| 253 |
-
|
| 254 |
-
# Update the history with the definitive final answer
|
| 255 |
-
if final_agent_answer:
|
| 256 |
-
history[-1][1] = final_agent_answer # Replace intermediate steps with final one
|
| 257 |
-
elif full_yielded_response:
|
| 258 |
-
# Fallback if final answer wasn't returned correctly but we yielded something
|
| 259 |
-
history[-1][1] = full_yielded_response
|
| 260 |
-
final_agent_answer = full_yielded_response # Use the last yielded message as answer
|
| 261 |
-
else:
|
| 262 |
-
history[-1][1] = "Agent did not produce a final answer."
|
| 263 |
-
final_agent_answer = "" # Ensure it's a string
|
| 264 |
-
|
| 265 |
-
# Yield the final state of the history and update the hidden state for the final answer
|
| 266 |
-
yield format_chat_history(history), final_agent_answer
|
| 267 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
task_id: str,
|
| 273 |
-
agent_answer: str,
|
| 274 |
-
# agent_instance: MyLangChainAgent # Pass agent via state if needed
|
| 275 |
-
):
|
| 276 |
-
"""Submits the agent's answer and code to the FastAPI backend."""
|
| 277 |
-
if agent_instance is None:
|
| 278 |
-
return "Agent not initialized. Cannot submit."
|
| 279 |
-
if not api_url:
|
| 280 |
-
return "Please enter the API URL."
|
| 281 |
-
if not username:
|
| 282 |
-
return "Please enter your Hugging Face username."
|
| 283 |
-
if not task_id:
|
| 284 |
-
return "No task ID available. Please fetch a question first."
|
| 285 |
-
if agent_answer is None or agent_answer.strip() == "": # Check if None or empty
|
| 286 |
-
# Maybe allow submission of empty answer? Depends on requirements.
|
| 287 |
-
print("Warning: Submitting empty answer.")
|
| 288 |
-
# return "Agent has not provided an answer yet."
|
| 289 |
-
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
submission_data = {
|
| 304 |
"username": username.strip(),
|
| 305 |
"agent_code": agent_code,
|
| 306 |
-
"answers":
|
| 307 |
-
{
|
| 308 |
-
"task_id": task_id,
|
| 309 |
-
"submitted_answer": agent_answer # Use the stored final answer
|
| 310 |
-
}
|
| 311 |
-
# Add more answers here if submitting a batch
|
| 312 |
-
]
|
| 313 |
}
|
|
|
|
|
|
|
| 314 |
|
|
|
|
|
|
|
| 315 |
try:
|
| 316 |
-
response = requests.post(submit_url, json=submission_data, timeout=
|
| 317 |
response.raise_for_status()
|
| 318 |
result_data = response.json()
|
| 319 |
-
|
| 320 |
-
|
|
|
|
| 321 |
f"Submission Successful!\n"
|
| 322 |
f"User: {result_data.get('username')}\n"
|
| 323 |
-
f"Score: {result_data.get('score')}
|
| 324 |
-
f"
|
| 325 |
-
f"Message: {result_data.get('message')}
|
| 326 |
-
f"Timestamp: {result_data.get('timestamp')}"
|
| 327 |
)
|
| 328 |
print("Submission successful.")
|
| 329 |
-
|
|
|
|
|
|
|
| 330 |
except requests.exceptions.HTTPError as e:
|
| 331 |
-
# Try to get detail from response body if available
|
| 332 |
error_detail = e.response.text
|
| 333 |
try:
|
| 334 |
error_json = e.response.json()
|
| 335 |
error_detail = error_json.get('detail', error_detail)
|
| 336 |
except requests.exceptions.JSONDecodeError:
|
| 337 |
-
pass
|
| 338 |
-
|
| 339 |
-
|
|
|
|
|
|
|
| 340 |
except requests.exceptions.RequestException as e:
|
| 341 |
-
|
| 342 |
-
|
|
|
|
|
|
|
| 343 |
except Exception as e:
|
| 344 |
-
|
| 345 |
-
|
|
|
|
|
|
|
| 346 |
|
| 347 |
|
| 348 |
# --- Build Gradio Interface using Blocks ---
|
| 349 |
with gr.Blocks() as demo:
|
| 350 |
-
gr.Markdown("# Agent Evaluation
|
| 351 |
gr.Markdown(
|
| 352 |
-
"
|
| 353 |
-
"
|
| 354 |
-
"
|
| 355 |
)
|
| 356 |
|
| 357 |
-
# --- State Variables ---
|
| 358 |
-
# Store current task info, agent's final answer, and the agent instance
|
| 359 |
-
current_task_id = gr.State("")
|
| 360 |
-
current_question_text = gr.State("")
|
| 361 |
-
current_agent_answer = gr.State("") # Stores the final answer string from the agent
|
| 362 |
-
# agent_state = gr.State(agent_instance) # Pass agent instance via state
|
| 363 |
-
|
| 364 |
with gr.Row():
|
| 365 |
api_url_input = gr.Textbox(label="FastAPI API URL", value=DEFAULT_API_URL)
|
| 366 |
hf_username_input = gr.Textbox(label="Hugging Face Username")
|
| 367 |
|
| 368 |
-
|
| 369 |
-
fetch_button = gr.Button("Get Random Question")
|
| 370 |
-
submission_status_display = gr.Textbox(label="Status", interactive=False) # For fetch status
|
| 371 |
-
|
| 372 |
-
with gr.Row():
|
| 373 |
-
question_display = gr.Textbox(label="Current Question", lines=3, interactive=False)
|
| 374 |
|
| 375 |
-
gr.
|
| 376 |
-
gr.
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
gr.Markdown("---")
|
| 385 |
-
gr.Markdown("## Submission")
|
| 386 |
-
with gr.Row():
|
| 387 |
-
submit_button = gr.Button("Submit Current Answer to Leaderboard")
|
| 388 |
-
|
| 389 |
-
submission_result_display = gr.Markdown(label="Submission Result", value="*Submit an answer to see the result here.*") # Use Markdown for better formatting
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
# --- Component Interactions ---
|
| 393 |
-
|
| 394 |
-
# Fetch Button Action
|
| 395 |
-
fetch_button.click(
|
| 396 |
-
fn=fetch_and_display_question,
|
| 397 |
-
inputs=[api_url_input],
|
| 398 |
-
outputs=[
|
| 399 |
-
submission_status_display, # Shows fetch status
|
| 400 |
-
current_task_id, # Updates hidden state
|
| 401 |
-
question_display, # Updates question text box
|
| 402 |
-
final_answer_display, # Clears old final answer
|
| 403 |
-
chatbot # Clears chat history
|
| 404 |
-
]
|
| 405 |
)
|
| 406 |
|
| 407 |
-
# Chat Submission Action (when user sends message in chat)
|
| 408 |
-
msg_input.submit(
|
| 409 |
-
fn=run_agent_interaction,
|
| 410 |
-
inputs=[
|
| 411 |
-
msg_input, # User message from chat input
|
| 412 |
-
chatbot, # Current chat history
|
| 413 |
-
current_task_id, # Current task ID from state
|
| 414 |
-
# agent_state # Pass agent instance state
|
| 415 |
-
],
|
| 416 |
-
outputs=[
|
| 417 |
-
chatbot, # Updated chat history
|
| 418 |
-
current_agent_answer # Update the hidden state holding the final answer
|
| 419 |
-
]
|
| 420 |
-
).then(
|
| 421 |
-
# After agent runs, update the visible "Final Answer" box from the state
|
| 422 |
-
lambda answer_state: answer_state,
|
| 423 |
-
inputs=[current_agent_answer],
|
| 424 |
-
outputs=[final_answer_display]
|
| 425 |
-
)
|
| 426 |
-
|
| 427 |
-
# Clear message input after submission
|
| 428 |
-
msg_input.submit(lambda: "", None, msg_input, queue=False)
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
# Submit Button Action
|
| 432 |
-
submit_button.click(
|
| 433 |
-
fn=submit_to_leaderboard,
|
| 434 |
-
inputs=[
|
| 435 |
-
api_url_input,
|
| 436 |
-
hf_username_input,
|
| 437 |
-
current_task_id,
|
| 438 |
-
current_agent_answer, # Use the stored final answer state
|
| 439 |
-
# agent_state # Pass agent instance state
|
| 440 |
-
],
|
| 441 |
-
outputs=[submission_result_display] # Display result message
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
|
| 445 |
if __name__ == "__main__":
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
print("Please ensure OPENAI_API_KEY is set and valid.\n")
|
| 449 |
-
# Optionally exit here if agent is critical
|
| 450 |
-
# exit(1)
|
| 451 |
-
else:
|
| 452 |
-
print("Launching Gradio Interface...")
|
| 453 |
-
demo.launch(debug=True, server_name="0.0.0.0") # Share=False by default for security
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
import inspect # To get source code for __repr__
|
| 5 |
+
import pandas as pd # For displaying results in a table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# --- Constants ---
|
| 8 |
DEFAULT_API_URL = "http://127.0.0.1:8000" # Default URL for your FastAPI app
|
| 9 |
|
| 10 |
+
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
class BasicAgent:
|
|
|
|
| 13 |
"""
|
| 14 |
+
A very simple agent placeholder.
|
| 15 |
+
It just returns a fixed string for any question.
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
+
def __init__(self):
|
| 18 |
+
print("BasicAgent initialized.")
|
| 19 |
+
# Add any setup if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
def __call__(self, question: str) -> str:
|
| 22 |
"""
|
| 23 |
+
The agent's logic to answer a question.
|
| 24 |
+
This basic version ignores the question content.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
"""
|
| 26 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 27 |
+
# Replace this with actual logic if you were building a real agent
|
| 28 |
+
fixed_answer = "This is a default answer."
|
| 29 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 30 |
+
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
def __repr__(self) -> str:
|
| 33 |
"""
|
| 34 |
+
Return the source code required to reconstruct this agent.
|
|
|
|
| 35 |
"""
|
| 36 |
imports = [
|
| 37 |
+
"import inspect\n" # May not be strictly needed by the agent logic itself
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
]
|
| 39 |
+
class_source = inspect.getsource(BasicAgent)
|
| 40 |
+
full_source = "\n".join(imports) + "\n" + class_source
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
return full_source
|
| 42 |
|
|
|
|
| 43 |
# --- Gradio UI and Logic ---
|
| 44 |
|
| 45 |
+
def run_and_submit_all(api_url: str, username: str):
|
| 46 |
+
"""
|
| 47 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 48 |
+
and displays the results.
|
| 49 |
+
"""
|
| 50 |
+
if not api_url:
|
| 51 |
+
return "Please enter the API URL.", None # Status, DataFrame
|
| 52 |
+
if not username:
|
| 53 |
+
return "Please enter your Hugging Face username.", None # Status, DataFrame
|
| 54 |
|
| 55 |
+
api_url = api_url.strip('/')
|
| 56 |
+
questions_url = f"{api_url}/questions"
|
| 57 |
+
submit_url = f"{api_url}/submit"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# 1. Instantiate the Agent
|
| 60 |
+
try:
|
| 61 |
+
agent = BasicAgent()
|
| 62 |
+
agent_code = agent.__repr__()
|
| 63 |
+
# print(f"Agent Code (first 200): {agent_code[:200]}...") # Debug
|
| 64 |
+
except Exception as e:
|
| 65 |
+
print(f"Error instantiating agent or getting repr: {e}")
|
| 66 |
+
return f"Error initializing agent: {e}", None
|
| 67 |
|
| 68 |
+
# 2. Fetch All Questions
|
| 69 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
try:
|
| 71 |
+
response = requests.get(questions_url, timeout=15)
|
| 72 |
+
response.raise_for_status()
|
| 73 |
+
questions_data = response.json()
|
| 74 |
+
if not questions_data:
|
| 75 |
+
return "Fetched questions list is empty.", None
|
| 76 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 77 |
+
status_update = f"Fetched {len(questions_data)} questions. Running agent..."
|
| 78 |
+
# Yield intermediate status if using gr.update
|
|
|
|
|
|
|
|
|
|
| 79 |
except requests.exceptions.RequestException as e:
|
| 80 |
+
print(f"Error fetching questions: {e}")
|
| 81 |
+
return f"Error fetching questions: {e}", None
|
| 82 |
except Exception as e:
|
| 83 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 84 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
# 3. Run Agent on Each Question
|
| 87 |
+
results_log = [] # To store data for the results table
|
| 88 |
+
answers_payload = [] # To store data for the submission API
|
| 89 |
+
for item in questions_data:
|
| 90 |
+
task_id = item.get("task_id")
|
| 91 |
+
question_text = item.get("question")
|
| 92 |
|
| 93 |
+
if not task_id or question_text is None:
|
| 94 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 95 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
try:
|
| 98 |
+
submitted_answer = agent(question_text) # Call the agent's logic
|
| 99 |
+
answers_payload.append({
|
| 100 |
+
"task_id": task_id,
|
| 101 |
+
"submitted_answer": submitted_answer
|
| 102 |
+
})
|
| 103 |
+
results_log.append({
|
| 104 |
+
"Task ID": task_id,
|
| 105 |
+
"Question": question_text,
|
| 106 |
+
"Submitted Answer": submitted_answer
|
| 107 |
+
})
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 110 |
+
# Decide how to handle agent errors - skip? submit default?
|
| 111 |
+
# Here, we'll just log and potentially skip submission for this task if needed
|
| 112 |
+
results_log.append({
|
| 113 |
+
"Task ID": task_id,
|
| 114 |
+
"Question": question_text,
|
| 115 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
| 116 |
+
})
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
if not answers_payload:
|
| 120 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 121 |
+
|
| 122 |
+
# 4. Prepare Submission
|
| 123 |
submission_data = {
|
| 124 |
"username": username.strip(),
|
| 125 |
"agent_code": agent_code,
|
| 126 |
+
"answers": answers_payload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
}
|
| 128 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers..."
|
| 129 |
+
print(status_update)
|
| 130 |
|
| 131 |
+
# 5. Submit to Leaderboard
|
| 132 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 133 |
try:
|
| 134 |
+
response = requests.post(submit_url, json=submission_data, timeout=45) # Increased timeout
|
| 135 |
response.raise_for_status()
|
| 136 |
result_data = response.json()
|
| 137 |
+
|
| 138 |
+
# Prepare final status message and results table
|
| 139 |
+
final_status = (
|
| 140 |
f"Submission Successful!\n"
|
| 141 |
f"User: {result_data.get('username')}\n"
|
| 142 |
+
f"Overall Score: {result_data.get('score')}% "
|
| 143 |
+
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
|
| 144 |
+
f"Message: {result_data.get('message')}"
|
|
|
|
| 145 |
)
|
| 146 |
print("Submission successful.")
|
| 147 |
+
results_df = pd.DataFrame(results_log)
|
| 148 |
+
return final_status, results_df
|
| 149 |
+
|
| 150 |
except requests.exceptions.HTTPError as e:
|
|
|
|
| 151 |
error_detail = e.response.text
|
| 152 |
try:
|
| 153 |
error_json = e.response.json()
|
| 154 |
error_detail = error_json.get('detail', error_detail)
|
| 155 |
except requests.exceptions.JSONDecodeError:
|
| 156 |
+
pass
|
| 157 |
+
status_message = f"Submission Failed (HTTP {e.response.status_code}): {error_detail}"
|
| 158 |
+
print(status_message)
|
| 159 |
+
results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
|
| 160 |
+
return status_message, results_df
|
| 161 |
except requests.exceptions.RequestException as e:
|
| 162 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 163 |
+
print(status_message)
|
| 164 |
+
results_df = pd.DataFrame(results_log)
|
| 165 |
+
return status_message, results_df
|
| 166 |
except Exception as e:
|
| 167 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 168 |
+
print(status_message)
|
| 169 |
+
results_df = pd.DataFrame(results_log)
|
| 170 |
+
return status_message, results_df
|
| 171 |
|
| 172 |
|
| 173 |
# --- Build Gradio Interface using Blocks ---
|
| 174 |
with gr.Blocks() as demo:
|
| 175 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 176 |
gr.Markdown(
|
| 177 |
+
"Enter the API URL and your username, then click Run. "
|
| 178 |
+
"This will fetch all questions, run the *very basic* agent on them, "
|
| 179 |
+
"submit all answers at once, and display the results."
|
| 180 |
)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
with gr.Row():
|
| 183 |
api_url_input = gr.Textbox(label="FastAPI API URL", value=DEFAULT_API_URL)
|
| 184 |
hf_username_input = gr.Textbox(label="Hugging Face Username")
|
| 185 |
|
| 186 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=4, interactive=False)
|
| 189 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 190 |
|
| 191 |
+
# --- Component Interaction ---
|
| 192 |
+
run_button.click(
|
| 193 |
+
fn=run_and_submit_all,
|
| 194 |
+
inputs=[api_url_input, hf_username_input],
|
| 195 |
+
outputs=[status_output, results_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
)
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
if __name__ == "__main__":
|
| 199 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 200 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|