root
commited on
Commit
·
1f8bf61
1
Parent(s):
093dbc9
init
Browse files- app.py +130 -0
- images/cat.jpg +0 -0
- images/child.jpg +0 -0
- images/interior.jpg +0 -0
- images/louvre.jpg +0 -0
- images/scream.jpg +0 -0
- images/three_people.jpg +0 -0
app.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from threading import Thread
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoModel, AutoProcessor
|
| 7 |
+
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList
|
| 8 |
+
|
| 9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True).to(device)
|
| 12 |
+
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-halfB", trust_remote_code=True)
|
| 13 |
+
|
| 14 |
+
class StopOnTokens(StoppingCriteria):
|
| 15 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 16 |
+
stop_ids = [151645]
|
| 17 |
+
for stop_id in stop_ids:
|
| 18 |
+
if input_ids[0][-1] == stop_id:
|
| 19 |
+
return True
|
| 20 |
+
return False
|
| 21 |
+
|
| 22 |
+
@torch.no_grad()
|
| 23 |
+
def response(message, history, image):
|
| 24 |
+
stop = StopOnTokens()
|
| 25 |
+
|
| 26 |
+
messages = [{"role": "system", "content": "You are a helpful assistant."}]
|
| 27 |
+
|
| 28 |
+
for user_msg, assistant_msg in history:
|
| 29 |
+
messages.append({"role": "user", "content": user_msg})
|
| 30 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 31 |
+
|
| 32 |
+
if len(messages) == 1:
|
| 33 |
+
message = f" <image>{message}"
|
| 34 |
+
|
| 35 |
+
messages.append({"role": "user", "content": message})
|
| 36 |
+
|
| 37 |
+
model_inputs = processor.tokenizer.apply_chat_template(
|
| 38 |
+
messages,
|
| 39 |
+
add_generation_prompt=True,
|
| 40 |
+
return_tensors="pt"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
image = (
|
| 44 |
+
processor.feature_extractor(image)
|
| 45 |
+
.unsqueeze(0)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
attention_mask = torch.ones(
|
| 49 |
+
1, model_inputs.shape[1] + processor.num_image_latents - 1
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
model_inputs = {
|
| 53 |
+
"input_ids": model_inputs,
|
| 54 |
+
"images": image,
|
| 55 |
+
"attention_mask": attention_mask
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
|
| 59 |
+
|
| 60 |
+
streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
|
| 61 |
+
generate_kwargs = dict(
|
| 62 |
+
model_inputs,
|
| 63 |
+
streamer=streamer,
|
| 64 |
+
max_new_tokens=1024,
|
| 65 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
| 66 |
+
)
|
| 67 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 68 |
+
t.start()
|
| 69 |
+
|
| 70 |
+
history.append([message, ""])
|
| 71 |
+
partial_response = ""
|
| 72 |
+
for new_token in streamer:
|
| 73 |
+
partial_response += new_token
|
| 74 |
+
history[-1][1] = partial_response
|
| 75 |
+
yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
with gr.Blocks() as demo:
|
| 79 |
+
with gr.Row():
|
| 80 |
+
image = gr.Image(type="pil")
|
| 81 |
+
|
| 82 |
+
with gr.Column():
|
| 83 |
+
chat = gr.Chatbot(show_label=False)
|
| 84 |
+
message = gr.Textbox(interactive=True, show_label=False, container=False)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
gr.ClearButton([chat, message])
|
| 88 |
+
stop = gr.Button(value="Stop", variant="stop", visible=False)
|
| 89 |
+
submit = gr.Button(value="Submit", variant="primary")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
gr.Examples(
|
| 93 |
+
[
|
| 94 |
+
["images/interior.jpg", "Describe the image accurately."],
|
| 95 |
+
["images/cat.jpg", "Describe the image in three sentences."],
|
| 96 |
+
["images/child.jpg", "Describe the image in one sentence."],
|
| 97 |
+
],
|
| 98 |
+
[image, message],
|
| 99 |
+
label="Captioning"
|
| 100 |
+
)
|
| 101 |
+
gr.Examples(
|
| 102 |
+
[
|
| 103 |
+
["images/scream.jpg", "What is the main emotion of this image?"],
|
| 104 |
+
["images/louvre.jpg", "Where is this landmark located?"],
|
| 105 |
+
["images/three_people.jpg", "What are these people doing?"]
|
| 106 |
+
],
|
| 107 |
+
[image, message],
|
| 108 |
+
label="VQA"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
response_handler = (
|
| 112 |
+
response,
|
| 113 |
+
[message, chat, image],
|
| 114 |
+
[chat, submit, stop]
|
| 115 |
+
)
|
| 116 |
+
postresponse_handler = (
|
| 117 |
+
lambda: (gr.Button(visible=False), gr.Button(visible=True)),
|
| 118 |
+
None,
|
| 119 |
+
[stop, submit]
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
event1 = message.submit(*response_handler)
|
| 123 |
+
event1.then(*postresponse_handler)
|
| 124 |
+
event2 = submit.click(*response_handler)
|
| 125 |
+
event2.then(*postresponse_handler)
|
| 126 |
+
|
| 127 |
+
stop.click(None, None, None, cancels=[event1, event2])
|
| 128 |
+
|
| 129 |
+
demo.queue()
|
| 130 |
+
demo.launch()
|
images/cat.jpg
ADDED
|
images/child.jpg
ADDED
|
images/interior.jpg
ADDED
|
images/louvre.jpg
ADDED
|
images/scream.jpg
ADDED
|
images/three_people.jpg
ADDED
|