import torch import streamlit as st from PIL import Image from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig , DonutProcessor def run_prediction(sample): global pretrained_model, processor, task_prompt if isinstance(sample, dict): # prepare inputs pixel_values = torch.tensor(sample["pixel_values"]).unsqueeze(0) else: # sample is an image # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids # run inference outputs = pretrained_model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=pretrained_model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # process output prediction = processor.batch_decode(outputs.sequences)[0] # post-processing if "cord" in task_prompt: prediction = prediction.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") prediction = re.sub(r"<.*?>", "", prediction, count=1).strip() # remove first task start token prediction = processor.token2json(prediction) # load reference target if isinstance(sample, dict): target = processor.token2json(sample["target_sequence"]) else: target = "" return prediction, target task_prompt = f"" st.text(''' This is OCR-free Document Understanding Transformer nicknamed 🍩. It was fine-tuned with 1000 receipt images -> SROIE dataset. The original 🍩 implementation can be found on: https://github.com/clovaai/donut ''') with st.sidebar: information = st.radio( "What information inside the are you interested in?", ('Receipt Summary', 'Receipt Menu Details', 'Extract all!')) receipt = st.selectbox('Pick one receipt', ['1', '2', '3', '4', '5', '6'], index=5) st.text(f'{information} mode is ON!\nTarget receipt: {receipt}\n(opening image @:./img/receipt-{receipt}.png)') image = Image.open(f"./img/receipt-{receipt}.jpg") st.image(image, caption='Your target receipt') st.text(f'baking the 🍩s...') if information == 'Receipt Summary': processor = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie") pretrained_model = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie") task_prompt = f"" device = "cuda" if torch.cuda.is_available() else "cpu" pretrained_model.to(device) elif information == 'Receipt Menu Details': processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") pretrained_model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") task_prompt = f"" device = "cuda" if torch.cuda.is_available() else "cpu" pretrained_model.to(device) else: # st.text(f'NotImplemented: soon you will be able to use it..') processor_a = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie") processor_b = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") pretrained_model_a = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie") pretrained_model_b = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") device = "cuda" if torch.cuda.is_available() else "cpu" pretrained_model.to(device) if information == 'Extract all!': st.text(f'parsing receipt (extracting all)..') pretrained_model, processor, task_prompt = pretrained_model_a, processor_a, f"" parsed_receipt_info_a = run_prediction(image) pretrained_model, processor, task_prompt = pretrained_model_b, processor_b, f"" parsed_receipt_info_b = run_prediction(image) st.text(f'\nRaw output a:\n{parsed_receipt_info_a}') st.text(f'\nRaw output b:\n{parsed_receipt_info_b}') else: st.text(f'parsing receipt..') parsed_receipt_info = run_prediction(image) st.text(f'\nRaw output:\n{parsed_receipt_info}')