Spaces:
Runtime error
Runtime error
chore: add receipt emojji
Browse files
app.py
CHANGED
@@ -59,9 +59,9 @@ with st.sidebar:
|
|
59 |
information = st.radio(
|
60 |
"What information inside the are you interested in?",
|
61 |
('Receipt Summary', 'Receipt Menu Details', 'Extract all!'))
|
62 |
-
receipt = st.selectbox('Pick one
|
63 |
|
64 |
-
st.text(f'{information} mode is ON!\nTarget
|
65 |
|
66 |
image = Image.open(f"./img/receipt-{receipt}.jpg")
|
67 |
st.image(image, caption='Your target receipt')
|
@@ -83,7 +83,6 @@ elif information == 'Receipt Menu Details':
|
|
83 |
pretrained_model.to(device)
|
84 |
|
85 |
else:
|
86 |
-
# st.text(f'NotImplemented: soon you will be able to use it..')
|
87 |
processor_a = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
88 |
processor_b = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
89 |
pretrained_model_a = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
@@ -93,7 +92,7 @@ else:
|
|
93 |
pretrained_model.to(device)
|
94 |
|
95 |
if information == 'Extract all!':
|
96 |
-
st.text(f'parsing
|
97 |
pretrained_model, processor, task_prompt = pretrained_model_a, processor_a, f"<s>"
|
98 |
parsed_receipt_info_a = run_prediction(image)
|
99 |
pretrained_model, processor, task_prompt = pretrained_model_b, processor_b, f"<s_cord-v2>"
|
@@ -101,6 +100,6 @@ if information == 'Extract all!':
|
|
101 |
st.text(f'\nRaw output a:\n{parsed_receipt_info_a}')
|
102 |
st.text(f'\nRaw output b:\n{parsed_receipt_info_b}')
|
103 |
else:
|
104 |
-
st.text(f'parsing
|
105 |
parsed_receipt_info = run_prediction(image)
|
106 |
st.text(f'\nRaw output:\n{parsed_receipt_info}')
|
|
|
59 |
information = st.radio(
|
60 |
"What information inside the are you interested in?",
|
61 |
('Receipt Summary', 'Receipt Menu Details', 'Extract all!'))
|
62 |
+
receipt = st.selectbox('Pick one 🧾', ['1', '2', '3', '4', '5', '6'], index=5)
|
63 |
|
64 |
+
st.text(f'{information} mode is ON!\nTarget 🧾: {receipt}\n(opening image @:./img/receipt-{receipt}.png)')
|
65 |
|
66 |
image = Image.open(f"./img/receipt-{receipt}.jpg")
|
67 |
st.image(image, caption='Your target receipt')
|
|
|
83 |
pretrained_model.to(device)
|
84 |
|
85 |
else:
|
|
|
86 |
processor_a = DonutProcessor.from_pretrained("unstructuredio/donut-base-sroie")
|
87 |
processor_b = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
88 |
pretrained_model_a = VisionEncoderDecoderModel.from_pretrained("unstructuredio/donut-base-sroie")
|
|
|
92 |
pretrained_model.to(device)
|
93 |
|
94 |
if information == 'Extract all!':
|
95 |
+
st.text(f'parsing 🧾 (extracting all)...')
|
96 |
pretrained_model, processor, task_prompt = pretrained_model_a, processor_a, f"<s>"
|
97 |
parsed_receipt_info_a = run_prediction(image)
|
98 |
pretrained_model, processor, task_prompt = pretrained_model_b, processor_b, f"<s_cord-v2>"
|
|
|
100 |
st.text(f'\nRaw output a:\n{parsed_receipt_info_a}')
|
101 |
st.text(f'\nRaw output b:\n{parsed_receipt_info_b}')
|
102 |
else:
|
103 |
+
st.text(f'parsing 🧾...')
|
104 |
parsed_receipt_info = run_prediction(image)
|
105 |
st.text(f'\nRaw output:\n{parsed_receipt_info}')
|