souranil3d commited on
Commit
7845cb9
·
1 Parent(s): 3362450

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -8,9 +8,6 @@ import cv2
8
  from detectron2.config import get_cfg
9
  from utils import add_bboxes
10
 
11
- # print(torch.__version__, torch.cuda.is_available())
12
- # assert torch.__version__.startswith("1.9")
13
-
14
  config_file="config.yaml"
15
  cfg = get_cfg()
16
  cfg.merge_from_file(config_file)
@@ -37,7 +34,7 @@ def predict(
37
  return img
38
 
39
  title = "Indoor Pet Detection"
40
- description = "This is an application trained with synthetic data from Unity Computer Vision. We trained a single class object detection model to recognize dogs using images of pets randomly posed and placed in our home interior environment. There are multiple pre-trained models trained with 5k, 40k and 100k synthetic data that you can choose to see the results."
41
  examples = [
42
  ["5k synthetic", 'example.jpg'],
43
  ["40k synthetic", 'example.jpg'],
 
8
  from detectron2.config import get_cfg
9
  from utils import add_bboxes
10
 
 
 
 
11
  config_file="config.yaml"
12
  cfg = get_cfg()
13
  cfg.merge_from_file(config_file)
 
34
  return img
35
 
36
  title = "Indoor Pet Detection"
37
+ description = "This is an application trained with synthetic data from Unity Computer Vision. We trained a single class object detection model to recognize dogs using images of pets randomly posed and placed in our home interior environment. There are multiple pre-trained models trained with 5k, 40k and 100k synthetic data that you can choose to see the results. <p> <a href='https://github.com/Unity-Technologies/Indoor-Pet-Detection'> Github Project </a> </p>"
38
  examples = [
39
  ["5k synthetic", 'example.jpg'],
40
  ["40k synthetic", 'example.jpg'],