Spaces:
Build error
Build error
File size: 1,575 Bytes
955f4a2 74ae3e6 955f4a2 08aa404 955f4a2 08aa404 3c27500 08aa404 d1d6e36 08aa404 4a8f1bb 3c27500 4a8f1bb d1d6e36 7b73b04 08aa404 955f4a2 08aa404 865c417 08aa404 458f9d6 bca82aa 4a8f1bb bca82aa 458f9d6 08aa404 4a8f1bb 08aa404 d1d6e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import gradio as gr
import logging
from detectron2.engine import DefaultPredictor
import cv2
from detectron2.config import get_cfg
from utils import add_bboxes
# print(torch.__version__, torch.cuda.is_available())
# assert torch.__version__.startswith("1.9")
config_file="config.yaml"
cfg = get_cfg()
cfg.merge_from_file(config_file)
cfg.MODEL.DEVICE="cpu"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
# cfg.MODEL.WEIGHTS = "checkpoints_model_final_imagenet_40k_synthetic.pth"
def predict(
model,
img
):
if model=="40k synthetic":
weights = "checkpoints_model_final_imagenet_40k_synthetic.pth"
elif model == "100k synthetic":
weights = "checkpoints_model_final_imagenet_100k_synthetic.pth"
cfg.MODEL.WEIGHTS=weights
predictor = DefaultPredictor(cfg)
im = cv2.imread(img.name)
output = predictor(im)
img = add_bboxes(im, output['instances'].pred_boxes, scores=output['instances'].scores)
return img
title = "Indoor Pet Detection"
description = "Demo for Indoor Pet Detection"
examples = [
["40k synthetic", 'example.jpg'],
["100k synthetic", 'example.jpg'],
["40k synthetic", 'example-2.jpg'],
["100k synthetic", 'example-2.jpg']
]
gr.Interface(predict, [gr.inputs.Dropdown(["40k synthetic", "100k synthetic"]), gr.inputs.Image(type="file")], outputs=gr.outputs.Image(type="pil"),enable_queue=True, title=title,
description=description,
# article=article,
examples=examples).launch(debug=True)
|