File size: 1,494 Bytes
955f4a2
74ae3e6
955f4a2
08aa404
 
 
 
 
955f4a2
 
 
 
08aa404
 
 
 
 
 
3c27500
08aa404
 
d1d6e36
 
08aa404
4a8f1bb
3c27500
4a8f1bb
d1d6e36
7b73b04
08aa404
955f4a2
08aa404
 
 
 
865c417
08aa404
458f9d6
4a8f1bb
 
458f9d6
08aa404
 
4a8f1bb
08aa404
 
d1d6e36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os 
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

import gradio as gr
import logging
from detectron2.engine import DefaultPredictor
import cv2
from detectron2.config import get_cfg
from utils import add_bboxes

# print(torch.__version__, torch.cuda.is_available())
# assert torch.__version__.startswith("1.9") 

config_file="config.yaml"
cfg = get_cfg()
cfg.merge_from_file(config_file)
cfg.MODEL.DEVICE="cpu"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
# cfg.MODEL.WEIGHTS = "checkpoints_model_final_imagenet_40k_synthetic.pth"

def predict(
    model,
    img
):
    if model=="40k synthetic":
        weights = "checkpoints_model_final_imagenet_40k_synthetic.pth"
    elif model == "100k synthetic":
        weights = "checkpoints_model_final_imagenet_100k_synthetic.pth"
    cfg.MODEL.WEIGHTS=weights
    predictor = DefaultPredictor(cfg)
    im = cv2.imread(img.name)
    output = predictor(im)
    img = add_bboxes(im, output['instances'].pred_boxes, scores=output['instances'].scores)
    return img

title = "Indoor Pet Detection"
description = "Demo for Indoor Pet Detection"
examples = [
    ["100k synthetic", 'example.jpg'],
    ["40k synthetic", 'example.jpg']
]


gr.Interface(predict, [gr.inputs.Dropdown(["40k synthetic", "100k synthetic"]), gr.inputs.Image(type="file")], outputs=gr.outputs.Image(type="pil"),enable_queue=True, title=title,
    description=description,
    # article=article,
    examples=examples).launch(debug=True)