File size: 70,978 Bytes
fe8dcb5
fe70438
cc5f321
fe70438
 
59be457
d08fbc6
fe70438
 
 
 
b462f85
fe8dcb5
cc5f321
fe70438
 
058c80a
fe70438
d08fbc6
f6ebc4f
fe70438
 
f6ebc4f
59be457
fe70438
 
7cdc7d0
fe70438
7cdc7d0
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8dcb5
 
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
fe8dcb5
 
 
cc5f321
 
 
 
 
 
 
 
 
 
 
fe8dcb5
 
7cdc7d0
 
 
 
 
 
 
fe70438
7cdc7d0
 
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
7cdc7d0
fe70438
cc5f321
 
fe70438
 
 
 
 
 
cc5f321
 
fe8dcb5
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8dcb5
058c80a
 
 
 
cc5f321
 
 
 
 
 
 
 
 
 
 
058c80a
 
cc5f321
 
 
 
 
058c80a
 
cc5f321
058c80a
cc5f321
 
058c80a
cc5f321
 
 
 
 
 
058c80a
cc5f321
058c80a
 
d08fbc6
 
 
 
 
 
 
 
 
 
 
fe8dcb5
 
b462f85
fe70438
 
4d23392
 
59be457
 
fe8dcb5
cc5f321
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
4d23392
b462f85
fe70438
fe8dcb5
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
b462f85
 
 
 
 
 
 
fe8dcb5
7cdc7d0
4d23392
 
 
d08fbc6
4d23392
 
cc5f321
 
 
 
 
fe70438
 
 
d08fbc6
4d23392
 
b462f85
fe70438
 
 
 
 
b462f85
 
 
 
 
 
 
 
cc5f321
 
 
 
b462f85
7cdc7d0
b462f85
 
fe70438
 
 
 
 
 
cc5f321
 
 
 
 
fe70438
59be457
 
7cdc7d0
 
 
 
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b462f85
f6ebc4f
b462f85
f6ebc4f
 
59be457
 
 
 
f6ebc4f
59be457
 
f6ebc4f
59be457
 
f6ebc4f
59be457
 
 
fe70438
7cdc7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
7cdc7d0
cc5f321
 
 
 
 
 
 
 
7cdc7d0
 
 
fe70438
 
 
7cdc7d0
 
 
 
 
 
cc5f321
fe70438
cc5f321
7cdc7d0
 
 
cc5f321
 
 
 
 
7cdc7d0
 
fe70438
 
 
 
 
 
 
 
 
 
7cdc7d0
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
 
f6ebc4f
cc5f321
 
 
 
fe70438
f6ebc4f
59be457
 
4d23392
fe70438
59be457
0a1b314
f6ebc4f
59be457
cc5f321
 
 
7cdc7d0
59be457
 
 
 
7cdc7d0
59be457
 
 
 
100c2eb
59be457
 
f6ebc4f
 
cc5f321
 
 
 
 
59be457
 
b462f85
f6ebc4f
b462f85
 
cc5f321
 
 
 
 
 
 
 
 
 
59be457
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59be457
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59be457
f6ebc4f
 
 
 
 
 
 
 
 
 
7cdc7d0
f6ebc4f
7cdc7d0
f6ebc4f
 
 
 
b462f85
59be457
 
 
 
 
 
 
058c80a
f6ebc4f
7cdc7d0
f6ebc4f
7cdc7d0
f6ebc4f
59be457
 
058c80a
f6ebc4f
 
 
 
058c80a
59be457
 
4d23392
59be457
 
058c80a
f6ebc4f
59be457
cc5f321
 
59be457
cc5f321
 
 
59be457
cc5f321
 
59be457
cc5f321
59be457
cc5f321
 
59be457
cc5f321
 
 
 
 
 
 
 
f6ebc4f
 
7cdc7d0
 
 
 
 
 
 
cc5f321
 
 
 
 
058c80a
 
fe70438
058c80a
fe70438
058c80a
7cdc7d0
058c80a
cc5f321
 
058c80a
 
 
 
 
cc5f321
 
 
 
 
058c80a
 
 
59be457
 
 
 
 
 
 
 
 
 
 
7cdc7d0
058c80a
 
cc5f321
058c80a
 
 
 
 
 
 
 
cc5f321
058c80a
 
 
cc5f321
 
 
 
 
 
 
 
 
 
 
058c80a
7cdc7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5f321
 
 
7cdc7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
 
7cdc7d0
 
fe70438
7cdc7d0
 
 
 
fe70438
7cdc7d0
 
fe70438
7cdc7d0
 
 
 
cc5f321
 
 
 
 
7cdc7d0
 
 
 
 
fe70438
7cdc7d0
fe70438
7cdc7d0
fe70438
7cdc7d0
 
 
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
058c80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058c80a
 
f6ebc4f
cc5f321
 
 
 
fe70438
f6ebc4f
058c80a
 
 
9d5b4c0
 
 
 
 
058c80a
 
 
 
f6ebc4f
 
 
7cdc7d0
058c80a
 
 
 
 
 
 
 
 
 
 
f6ebc4f
 
 
058c80a
 
 
 
 
 
 
 
9d5b4c0
058c80a
 
 
4d23392
fe70438
058c80a
 
 
9d5b4c0
f6ebc4f
7cdc7d0
9d5b4c0
 
cc5f321
 
 
9d5b4c0
 
 
 
 
cc5f321
9d5b4c0
cc5f321
9d5b4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058c80a
9d5b4c0
cc5f321
9d5b4c0
058c80a
cc5f321
 
 
 
 
058c80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5f321
 
 
 
058c80a
 
7cdc7d0
9d5b4c0
f6ebc4f
 
058c80a
cc5f321
058c80a
 
 
 
 
9d5b4c0
058c80a
cc5f321
058c80a
cc5f321
7cdc7d0
cc5f321
 
 
 
 
fe70438
cc5f321
 
 
fe70438
cc5f321
fe70438
7cdc7d0
 
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
 
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
cc5f321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08fbc6
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08fbc6
 
 
 
 
fe70438
d08fbc6
 
 
 
 
 
 
cc5f321
 
 
d08fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
d08fbc6
 
 
 
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc5f321
 
 
 
 
d08fbc6
 
 
 
 
 
cc5f321
fe70438
 
d08fbc6
 
fe70438
 
 
 
 
 
 
 
 
d08fbc6
 
cc5f321
 
 
 
d08fbc6
 
 
 
 
 
 
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
import abc
import asyncio
import dataclasses
import json
import logging
import os
import re
import sys
import time
import uuid
from collections import Counter
from typing import Any, Dict, List, Literal, Optional, Union

from datasets import DatasetDict
from tqdm import tqdm, trange
from tqdm.asyncio import tqdm_asyncio

from .artifact import Artifact
from .dataclass import InternalField, NonPositionalField
from .deprecation_utils import deprecation
from .error_utils import UnitxtError
from .image_operators import data_url_to_image, extract_images
from .logging_utils import get_logger
from .operator import PackageRequirementsMixin
from .operators import ArtifactFetcherMixin
from .settings_utils import get_constants, get_settings

constants = get_constants()
settings = get_settings()
logger = get_logger()


class StandardAPIParamsMixin(Artifact):
    model: str
    frequency_penalty: Optional[float] = None
    presence_penalty: Optional[float] = None
    max_tokens: Optional[int] = None
    seed: Optional[int] = None
    stop: Union[Optional[str], List[str]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_logprobs: Optional[int] = None
    logit_bias: Optional[Dict[str, int]] = None
    logprobs: Optional[bool] = None
    n: Optional[int] = None
    parallel_tool_calls: Optional[bool] = None
    service_tier: Optional[Literal["auto", "default"]] = None


def get_model_and_label_id(model_name, label):
    model_id = model_name.split("/")[-1].replace("-", "_").replace(".", ",").lower()
    return f"{model_id}_{label}"


@dataclasses.dataclass
class TextGenerationInferenceOutput:
    """Contains the prediction results and metadata for the inference.

    Args:
    prediction (Union[str, List[Dict[str, Any]]]): If this is the result of an _infer call, the string predicted by the model.
    If this is the results of an _infer_log_probs call, a list of dictionaries. The i'th dictionary represents
    the i'th token in the response. The entry "top_tokens" in the dictionary holds a sorted list of the top tokens
    for this position and their probabilities.
    For example: [ {.. "top_tokens": [ {"text": "a", 'logprob': },  {"text": "b", 'logprob': } ....]},
                   {.. "top_tokens": [ {"text": "c", 'logprob': },  {"text": "d", 'logprob': } ....]}
                ]

    input_tokens (int) : number of input tokens to the model.
    output_tokens (int) : number of output tokens to the model.
    model_name (str): the model_name as kept in the InferenceEngine.
    inference_type (str): The label stating the type of the InferenceEngine.
    """

    prediction: Union[str, List[Dict[str, Any]]]
    input_tokens: Optional[int] = None
    output_tokens: Optional[int] = None
    model_name: Optional[str] = None
    inference_type: Optional[str] = None


class InferenceEngine(Artifact):
    """Abstract base class for inference."""

    @abc.abstractmethod
    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        """Perform inference on the input dataset.

        If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string.
        return_meta_data is only supported for some InferenceEngines.
        predictions.
        """
        pass

    @abc.abstractmethod
    def prepare_engine(self):
        """Perform inference on the input dataset."""
        pass

    def prepare(self):
        if not settings.mock_inference_mode:
            super().prepare()  # no need to prepare a mock
            self.prepare_engine()

    def infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        """Verifies instances of a dataset and perform inference on the input dataset.

        If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string
        predictions.
        """
        if return_meta_data and not hasattr(self, "get_return_object"):
            raise NotImplementedError(
                f"Inference engine {self.__class__.__name__} does not support return_meta_data as it "
                f"does not contain a 'get_return_object' method. Please set return_meta_data=False."
            )

        [self.verify_instance(instance) for instance in dataset]
        if settings.mock_inference_mode:
            return self._mock_infer(dataset)
        return self._infer(dataset, return_meta_data)

    def _mock_infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        return [str(instance["source"]) for instance in dataset]

    def get_engine_id(self):
        raise NotImplementedError()

    @deprecation(version="2.0.0")
    def _set_inference_parameters(self):
        """Sets inference parameters of an instance based on 'parameters' attribute (if given)."""
        if hasattr(self, "parameters") and self.parameters is not None:
            get_logger().warning(
                f"The 'parameters' attribute of '{self.get_pretty_print_name()}' "
                f"is deprecated. Please pass inference parameters directly to the "
                f"inference engine instance instead."
            )

            for param, param_dict_val in self.parameters.to_dict(
                [self.parameters]
            ).items():
                param_inst_val = getattr(self, param)
                if param_inst_val is None:
                    setattr(self, param, param_dict_val)

    def verify_not_chat_api(self, dataset):
        if isinstance(dataset[0]["source"], list):
            raise NotImplementedError(
                f"Inference engine {self.__class__.__name__} does not support chat api format."
            )

    def to_messages(self, instance):
        if isinstance(instance["source"], list):
            return instance["source"]
        return [
            {
                "role": "user",
                "content": instance["source"],
            }
        ]


class LogProbInferenceEngine(abc.ABC, Artifact):
    """Abstract base class for inference with log probs."""

    @abc.abstractmethod
    def _infer_log_probs(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
        """Perform inference on the input dataset  that returns log probs.

        If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the logprob dicts.
        return_meta_data is only supported for some InferenceEngines.
        predictions.
        """
        pass

    def infer_log_probs(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
        """Verifies instances of a dataset and performs inference that returns log probabilities of top tokens.

        For each instance , generates a list of top tokens per position.
        [ "top_tokens": [ { "text": ..., "logprob": ...} , ... ]
        If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns the list of the logprob dicts.
        return_meta_data is only supported for some InferenceEngines.
        """
        if return_meta_data and not hasattr(self, "get_return_object"):
            raise NotImplementedError(
                f"Inference engine {self.__class__.__name__} does not support return_meta_data as it "
                f"does not contain a 'get_return_object' method. Please set return_meta_data=False."
            )

        [self.verify_instance(instance) for instance in dataset]
        return self._infer_log_probs(dataset, return_meta_data)


class LazyLoadMixin(Artifact):
    lazy_load: bool = NonPositionalField(default=False)

    @abc.abstractmethod
    def _is_loaded(self):
        pass


class HFPipelineBasedInferenceEngine(
    InferenceEngine, PackageRequirementsMixin, LazyLoadMixin
):
    model_name: str
    max_new_tokens: int
    use_fp16: bool = True
    batch_size: int = 1
    top_k: Optional[int] = None

    _requirements_list = {
        "transformers": "Install huggingface package using 'pip install --upgrade transformers"
    }

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, "hf_pipeline")

    def _get_task(self):
        from transformers import AutoConfig

        return (
            "text2text-generation"
            if AutoConfig.from_pretrained(
                self.model_name, trust_remote_code=True
            ).is_encoder_decoder
            else "text-generation"
        )

    def _prepare_pipeline(self):
        import torch
        from transformers import pipeline

        model_args: Dict[str, Any] = (
            {"torch_dtype": torch.float16} if self.use_fp16 else {}
        )
        model_args.update({"max_new_tokens": self.max_new_tokens})

        device = torch.device(
            "mps"
            if torch.backends.mps.is_available()
            else 0
            if torch.cuda.is_available()
            else "cpu"
        )
        # We do this, because in some cases, using device:auto will offload some weights to the cpu
        # (even though the model might *just* fit to a single gpu), even if there is a gpu available, and this will
        # cause an error because the data is always on the gpu
        if torch.cuda.device_count() > 1:
            assert device == torch.device(0)
            model_args.update({"device_map": "auto"})
        else:
            model_args.update({"device": device})

        task = self._get_task()

        if task == "text-generation":
            model_args.update({"return_full_text": False})

        self.model = pipeline(
            model=self.model_name, trust_remote_code=True, **model_args
        )

    def prepare_engine(self):
        if not self.lazy_load:
            self._prepare_pipeline()

    def _is_loaded(self):
        return hasattr(self, "model") and self.model is not None

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        if self._get_task() == "text2text-generation":
            self.verify_not_chat_api(dataset)

        if not self._is_loaded():
            self._prepare_pipeline()

        outputs = []
        for output in self.model(
            [instance["source"] for instance in dataset],
            batch_size=self.batch_size,
            top_k=self.top_k,
        ):
            if isinstance(output, list):
                output = output[0]
            outputs.append(output["generated_text"])
        return outputs


class MockInferenceEngine(InferenceEngine):
    model_name: str
    default_inference_value: str = "[[10]]"

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, "mock")

    def prepare_engine(self):
        return

    def _mock_infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        return [self.default_inference_value for _ in dataset]

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        return self._mock_infer(dataset)


class MockModeMixin(Artifact):
    mock_mode: bool = False


class IbmGenAiInferenceEngineParamsMixin(Artifact):
    beam_width: Optional[int] = None
    decoding_method: Optional[Literal["greedy", "sample"]] = None
    include_stop_sequence: Optional[bool] = None
    length_penalty: Any = None
    max_new_tokens: Optional[int] = None
    min_new_tokens: Optional[int] = None
    random_seed: Optional[int] = None
    repetition_penalty: Optional[float] = None
    return_options: Any = None
    stop_sequences: Optional[List[str]] = None
    temperature: Optional[float] = None
    time_limit: Optional[int] = None
    top_k: Optional[int] = None
    top_p: Optional[float] = None
    truncate_input_tokens: Optional[int] = None
    typical_p: Optional[float] = None


@deprecation(version="2.0.0", alternative=IbmGenAiInferenceEngineParamsMixin)
class IbmGenAiInferenceEngineParams(Artifact):
    beam_width: Optional[int] = None
    decoding_method: Optional[Literal["greedy", "sample"]] = None
    include_stop_sequence: Optional[bool] = None
    length_penalty: Any = None
    max_new_tokens: Optional[int] = None
    min_new_tokens: Optional[int] = None
    random_seed: Optional[int] = None
    repetition_penalty: Optional[float] = None
    return_options: Any = None
    stop_sequences: Optional[List[str]] = None
    temperature: Optional[float] = None
    time_limit: Optional[int] = None
    top_k: Optional[int] = None
    top_p: Optional[float] = None
    truncate_input_tokens: Optional[int] = None
    typical_p: Optional[float] = None


class GenericInferenceEngine(InferenceEngine, ArtifactFetcherMixin):
    default: Optional[str] = None

    def prepare_engine(self):
        if "UNITXT_INFERENCE_ENGINE" in os.environ:
            engine_reference = os.environ["UNITXT_INFERENCE_ENGINE"]
        else:
            assert self.default is not None, (
                "GenericInferenceEngine could not be initialized"
                '\nThis is since both the "UNITXT_INFERENCE_ENGINE" environmental variable is not set and no default engine was not inputted.'
                "\nFor example, you can fix it by setting"
                "\nexport UNITXT_INFERENCE_ENGINE=engines.ibm_gen_ai.llama_3_70b_instruct"
                "\nto your ~/.bashrc"
                "\nor passing a similar required engine in the default argument"
            )
            engine_reference = self.default
        self.engine = self.get_artifact(engine_reference)

    def get_engine_id(self):
        return "generic_inference_engine"

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        return self.engine._infer(dataset)


class OllamaInferenceEngine(
    InferenceEngine, StandardAPIParamsMixin, PackageRequirementsMixin
):
    label: str = "ollama"
    _requirements_list = {
        "ollama": "Install ollama package using 'pip install --upgrade ollama"
    }
    data_classification_policy = ["public", "proprietary"]

    def get_engine_id(self):
        return get_model_and_label_id(self.model, self.label)

    def prepare_engine(self):
        pass

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        import ollama

        args = self.to_dict([StandardAPIParamsMixin])

        results = []

        for instance in dataset:
            messages = self.to_messages(instance)
            response = ollama.chat(
                model=self.model,
                messages=messages,
                **args,
            )
            results.append(response)

        return [element["message"]["content"] for element in results]


class OptionSelectingByLogProbsInferenceEngine:
    """OptionSelectingByLogProbsInferenceEngine inference engine is used to select an option based on the logprobs of an options list conditioned by a prompt.

    The inference engines that inherit from this class must implement `get_token_count` and `get_options_log_probs`.
    """

    @abc.abstractmethod
    def get_token_count(self, dataset):
        """Get the token count of the source key of each dict of the dataset. Add to each instance in the data a "token_count" field.

        Args:
            dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.

        Returns:
            List[int]: The token count of the texts
        """

    @abc.abstractmethod
    def get_options_log_probs(self, dataset):
        """Get the token logprobs of the options of the key task_data.options of each dict of the dataset.

        Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}.

        Args:
            dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.

        Returns:
            List[int]: The token count of the texts
        """

    def select(self, dataset: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Calculate most likely labels based on log probabilities for a set of fixed completions."""
        dataset_with_token_counts = self.get_token_count(dataset)
        token_counts = [d["token_count"] for d in dataset_with_token_counts]

        # pass in the token count so we only return the option score
        dataset_with_options = [
            {
                "source": instance["source"] + option,
                "task_data": {"token_count": token_count},
            }
            for instance, token_count in zip(dataset, token_counts)
            for option in instance["task_data"]["options"]
        ]

        dataset_with_options_logprobs: list[
            list[dict[str, float | str]]
        ] = self.get_options_log_probs(dataset_with_options)

        dataset_iterator = iter(dataset_with_options_logprobs)

        for instance in dataset:
            tokens_with_logprob_list = []
            # get the input tokens for the completions of the current resp_idx
            for _ in instance["task_data"]["options"]:
                tokens_with_logprob = next(dataset_iterator)["prediction"]
                tokens_with_logprob_list.append(tokens_with_logprob)
            # we start comparing all the options, e.g. if there are five options the value will be [0,1,2,3,4]
            to_compare_indexes = list(range(len(instance["task_data"]["options"])))
            # token_with_logprob_comp is the logprobs and the text of the tokens
            # for each of the options at a specific index
            for token_with_logprob_comp in zip(*tokens_with_logprob_list):
                tokens_comp = [t["text"] for t in token_with_logprob_comp]
                logprobs_comp = [t["logprob"] for t in token_with_logprob_comp]
                # Find the maximum value by comparing the logprob of the nth token of non-discarded options
                index_max = max(
                    (
                        (val, idx)
                        for idx, val in enumerate(logprobs_comp)
                        if idx in to_compare_indexes
                    ),
                    key=lambda x: x[0],
                )[1]
                # get the token of the biggest logprob
                token_value_with_max_logprob = tokens_comp[index_max]
                # check that the token is not repeated in the non-discarded options
                count = tokens_comp.count(token_value_with_max_logprob)
                if count > 1:
                    # multiple tokens with same max logprob, we need to continue iterating
                    to_compare_indexes = [
                        index
                        for index, token_value in enumerate(tokens_comp)
                        if token_value == token_value_with_max_logprob
                    ]
                    continue
                # we got the index of the maximum log_prob that doesn't have a duplicated token value at other index
                break

            if len(to_compare_indexes) > 1:
                # multiple options are either equal or have the same token values prefix
                # choose the first
                index_max = to_compare_indexes[0]

            instance["prediction"] = instance["task_data"]["options"][index_max]
        return dataset


class IbmGenAiInferenceEngine(
    InferenceEngine,
    IbmGenAiInferenceEngineParamsMixin,
    PackageRequirementsMixin,
    LogProbInferenceEngine,
    OptionSelectingByLogProbsInferenceEngine,
):
    label: str = "ibm_genai"
    model_name: str
    _requirements_list = {
        "ibm-generative-ai": "Install ibm-genai package using 'pip install --upgrade ibm-generative-ai"
    }
    data_classification_policy = ["public", "proprietary"]
    parameters: Optional[IbmGenAiInferenceEngineParams] = None

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, self.label)

    def prepare_engine(self):
        from genai import Client, Credentials

        api_key_env_var_name = "GENAI_KEY"
        api_key = os.environ.get(api_key_env_var_name)

        assert api_key is not None, (
            f"Error while trying to run IbmGenAiInferenceEngine."
            f" Please set the environment param '{api_key_env_var_name}'."
        )
        credentials = Credentials(api_key=api_key)
        self.client = Client(credentials=credentials)

        self._set_inference_parameters()

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        from genai.schema import TextGenerationParameters

        genai_params = TextGenerationParameters(
            **self.to_dict([IbmGenAiInferenceEngineParamsMixin])
        )

        results = []
        responses = self.client.text.generation.create(
            model_id=self.model_name,
            inputs=[instance["source"] for instance in dataset],
            parameters=genai_params,
        )
        for response in responses:
            generated_text = response.results[0].generated_text
            result = self.get_return_object(
                generated_text, response.results[0], return_meta_data
            )
            results.append(result)
        return results

    def _infer_log_probs(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
        from genai.schema import TextGenerationParameters

        logprobs_return_options = {
            "generated_tokens": True,
            "input_text": False,
            "input_tokens": False,
            "token_logprobs": True,
            "token_ranks": True,
            "top_n_tokens": 5,
        }
        genai_params = self.to_dict(
            [IbmGenAiInferenceEngineParamsMixin], keep_empty=False
        )
        genai_params = {**genai_params, "return_options": logprobs_return_options}
        genai_params = TextGenerationParameters(**genai_params)
        predictions = self.client.text.generation.create(
            model_id=self.model_name,
            inputs=[instance["source"] for instance in dataset],
            parameters=genai_params,
        )

        predict_results = []
        for prediction in predictions:
            result = prediction.results[0]
            assert isinstance(
                result.generated_tokens, list
            ), "result.generated_tokens should be a list"

            predict_result = []
            for base_token in result.generated_tokens:
                res = {**base_token.__dict__, **base_token.model_extra}
                res["top_tokens"] = [
                    {"logprob": top_token.logprob, "text": top_token.text}
                    for top_token in res["top_tokens"]
                ]
                predict_result.append(res)
            final_results = self.get_return_object(
                predict_result, result, return_meta_data
            )
            predict_results.append(final_results)
        return predict_results

    def get_return_object(self, predict_result, result, return_meta_data):
        if return_meta_data:
            return TextGenerationInferenceOutput(
                prediction=predict_result,
                input_tokens=result.input_token_count,
                output_tokens=result.generated_token_count,
                model_name=self.model_name,
                inference_type=self.label,
            )
        return predict_result

    def get_token_count(self, dataset):
        texts = [instance["source"] for instance in dataset]
        token_counts = list(
            tqdm(
                [
                    result.token_count
                    for response in self.client.text.tokenization.create(
                        model_id=self.model_name,
                        input=texts,
                        execution_options={"ordered": True},
                    )
                    for result in response.results
                ],
                desc="Tokenizing",
                total=len(texts),
            )
        )
        for i, token_count in enumerate(token_counts):
            dataset[i]["token_count"] = token_count
        return dataset

    def get_options_log_probs(self, dataset):
        """Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
        from genai.schema import TextGenerationParameters, TextGenerationReturnOptions

        texts = [x["source"] for x in dataset]

        responses = tqdm(
            self.client.text.generation.create(
                model_id=self.model_name,
                inputs=texts,
                execution_options={"ordered": True},
                parameters=TextGenerationParameters(
                    max_new_tokens=1,
                    return_options=TextGenerationReturnOptions(
                        input_tokens=True, token_logprobs=True
                    ),
                    # random_seed=self.random_state
                ),
            ),
            total=len(texts),
            desc="Completions",
        )

        scores = [
            [
                {"text": token.text, "logprob": token.logprob}
                for token in response.results[0].input_tokens
            ]
            for response in responses
        ]

        for instance, score in zip(dataset, scores):
            instance["prediction"] = score[instance["task_data"]["token_count"] - 1 :]
        return dataset


class OpenAiInferenceEngineParamsMixin(Artifact):
    frequency_penalty: Optional[float] = None
    presence_penalty: Optional[float] = None
    max_tokens: Optional[int] = None
    seed: Optional[int] = None
    stop: Union[Optional[str], List[str]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_logprobs: Optional[int] = 20
    logit_bias: Optional[Dict[str, int]] = None
    logprobs: Optional[bool] = True
    n: Optional[int] = None
    parallel_tool_calls: Optional[bool] = None
    service_tier: Optional[Literal["auto", "default"]] = None


@deprecation(version="2.0.0", alternative=OpenAiInferenceEngineParamsMixin)
class OpenAiInferenceEngineParams(Artifact):
    frequency_penalty: Optional[float] = None
    presence_penalty: Optional[float] = None
    max_tokens: Optional[int] = None
    seed: Optional[int] = None
    stop: Union[Optional[str], List[str]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_logprobs: Optional[int] = 20
    logit_bias: Optional[Dict[str, int]] = None
    logprobs: Optional[bool] = True
    n: Optional[int] = None
    parallel_tool_calls: Optional[bool] = None
    service_tier: Optional[Literal["auto", "default"]] = None


class OpenAiInferenceEngine(
    InferenceEngine,
    LogProbInferenceEngine,
    OpenAiInferenceEngineParamsMixin,
    PackageRequirementsMixin,
):
    label: str = "openai"
    model_name: str
    _requirements_list = {
        "openai": "Install openai package using 'pip install --upgrade openai"
    }
    data_classification_policy = ["public"]
    parameters: Optional[OpenAiInferenceEngineParams] = None

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, self.label)

    @classmethod
    def get_api_param(cls, inference_engine: str, api_param_env_var_name: str):
        api_key = os.environ.get(api_param_env_var_name)
        assert api_key is not None, (
            f"Error while trying to run {inference_engine}."
            f" Please set the environment param '{api_param_env_var_name}'."
        )
        return api_key

    def create_client(self):
        from openai import OpenAI

        api_key = self.get_api_param(
            inference_engine="OpenAiInferenceEngine",
            api_param_env_var_name="OPENAI_API_KEY",
        )
        return OpenAI(api_key=api_key)

    def prepare_engine(self):
        self.client = self.create_client()
        self._set_inference_parameters()

    def _get_completion_kwargs(self):
        return {
            k: v
            for k, v in self.to_dict([OpenAiInferenceEngineParamsMixin]).items()
            if v is not None
        }

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        outputs = []
        for instance in tqdm(dataset, desc="Inferring with openAI API"):
            messages = self.to_messages(instance)
            response = self.client.chat.completions.create(
                messages=messages,
                model=self.model_name,
                **self._get_completion_kwargs(),
            )
            prediction = response.choices[0].message.content
            output = self.get_return_object(prediction, response, return_meta_data)

            outputs.append(output)

        return outputs

    def _infer_log_probs(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
        outputs = []
        for instance in tqdm(dataset, desc="Inferring with openAI API"):
            response = self.client.chat.completions.create(
                messages=[
                    # {
                    #     "role": "system",
                    #     "content": self.system_prompt,
                    # },
                    {
                        "role": "user",
                        "content": instance["source"],
                    }
                ],
                model=self.model_name,
                **self._get_completion_kwargs(),
            )
            top_logprobs_response = response.choices[0].logprobs.content
            pred_output = [
                {
                    "top_tokens": [
                        {"text": obj.token, "logprob": obj.logprob}
                        for obj in generated_token.top_logprobs
                    ]
                }
                for generated_token in top_logprobs_response
            ]
            output = self.get_return_object(pred_output, response, return_meta_data)
            outputs.append(output)
        return outputs

    def get_return_object(self, predict_result, response, return_meta_data):
        if return_meta_data:
            return TextGenerationInferenceOutput(
                prediction=predict_result,
                input_tokens=response.usage.prompt_tokens,
                output_tokens=response.usage.completion_tokens,
                model_name=self.model_name,
                inference_type=self.label,
            )
        return predict_result


class TogetherAiInferenceEngineParamsMixin(Artifact):
    max_tokens: Optional[int] = None
    stop: Optional[List[str]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    repetition_penalty: Optional[float] = None
    logprobs: Optional[int] = None
    echo: Optional[bool] = None
    n: Optional[int] = None
    min_p: Optional[float] = None
    presence_penalty: Optional[float] = None
    frequency_penalty: Optional[float] = None


class TogetherAiInferenceEngine(
    InferenceEngine, TogetherAiInferenceEngineParamsMixin, PackageRequirementsMixin
):
    label: str = "together"
    model_name: str
    _requirements_list = {
        "together": "Install together package using 'pip install --upgrade together"
    }
    data_classification_policy = ["public"]
    parameters: Optional[TogetherAiInferenceEngineParamsMixin] = None

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, self.label)

    def prepare_engine(self):
        from together import Together
        from together.types.models import ModelType

        api_key_env_var_name = "TOGETHER_API_KEY"
        api_key = os.environ.get(api_key_env_var_name)
        assert api_key is not None, (
            f"Error while trying to run TogetherAiInferenceEngine."
            f" Please set the environment param '{api_key_env_var_name}'."
        )
        self.client = Together(api_key=api_key)
        self._set_inference_parameters()

        # Get model type from Together List Models API
        together_models = self.client.models.list()
        together_model_id_to_type = {
            together_model.id: together_model.type for together_model in together_models
        }
        model_type = together_model_id_to_type.get(self.model_name)
        assert model_type is not None, (
            f"Could not find model {self.model_name} " "in Together AI model list"
        )
        assert model_type in [ModelType.CHAT, ModelType.LANGUAGE, ModelType.CODE], (
            f"Together AI model type {model_type} is not supported; "
            "supported types are 'chat', 'language' and 'code'."
        )
        self.model_type = model_type

    def _get_infer_kwargs(self):
        return {
            k: v
            for k, v in self.to_dict([TogetherAiInferenceEngineParamsMixin]).items()
            if v is not None
        }

    def _infer_chat(self, instance: Dict[str, Any]) -> str:
        messages = self.to_messages(instance)
        response = self.client.chat.completions.create(
            model=self.model_name,
            messages=messages,
            **self._get_infer_kwargs(),
        )
        return response.choices[0].message.content

    def _infer_text(self, instance: Dict[str, Any]) -> str:
        response = self.client.completions.create(
            model=self.model_name,
            prompt=instance["source"],
            **self._get_infer_kwargs(),
        )
        return response.choices[0].text

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        from together.types.models import ModelType

        outputs = []
        if self.model_type == ModelType.CHAT:
            for instance in tqdm(dataset, desc="Inferring with Together AI Chat API"):
                outputs.append(self._infer_chat(instance))
        else:
            self.verify_not_chat_api(dataset)
            for instance in tqdm(dataset, desc="Inferring with Together AI Text API"):
                outputs.append(self._infer_text(instance))
        return outputs


class VLLMRemoteInferenceEngine(OpenAiInferenceEngine):
    label: str = "vllm"

    def create_client(self):
        from openai import OpenAI

        api_key = self.get_api_param(
            inference_engine="VLLMRemoteInferenceEngine",
            api_param_env_var_name="VLLM_API_KEY",
        )
        api_url = self.get_api_param(
            inference_engine="VLLMRemoteInferenceEngine",
            api_param_env_var_name="VLLM_API_URL",
        )
        return OpenAI(api_key=api_key, base_url=api_url)


class WMLInferenceEngineParamsMixin(Artifact):
    decoding_method: Optional[Literal["greedy", "sample"]] = None
    length_penalty: Optional[Dict[str, Union[int, float]]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    random_seed: Optional[int] = None
    repetition_penalty: Optional[float] = None
    min_new_tokens: Optional[int] = None
    max_new_tokens: Optional[int] = None
    stop_sequences: Optional[List[str]] = None
    time_limit: Optional[int] = None
    truncate_input_tokens: Optional[int] = None
    prompt_variables: Optional[Dict[str, Any]] = None
    return_options: Optional[Dict[str, bool]] = None


@deprecation(version="2.0.0", alternative=WMLInferenceEngineParamsMixin)
class WMLInferenceEngineParams(Artifact):
    decoding_method: Optional[Literal["greedy", "sample"]] = None
    length_penalty: Optional[Dict[str, Union[int, float]]] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    random_seed: Optional[int] = None
    repetition_penalty: Optional[float] = None
    min_new_tokens: Optional[int] = None
    max_new_tokens: Optional[int] = None
    stop_sequences: Optional[List[str]] = None
    time_limit: Optional[int] = None
    truncate_input_tokens: Optional[int] = None
    prompt_variables: Optional[Dict[str, Any]] = None
    return_options: Optional[Dict[str, bool]] = None


class WMLInferenceEngine(
    InferenceEngine,
    WMLInferenceEngineParamsMixin,
    PackageRequirementsMixin,
    LogProbInferenceEngine,
    OptionSelectingByLogProbsInferenceEngine,
):
    """Runs inference using ibm-watsonx-ai.

    Attributes:
        credentials (Dict[str, str], optional): By default, it is created by a class
            instance which tries to retrieve proper environment variables
            ("WML_URL", "WML_PROJECT_ID", "WML_APIKEY"). However, a dictionary with
            the following keys: "url", "apikey", "project_id" can be directly provided
            instead.
        model_name (str, optional): ID of a model to be used for inference. Mutually
            exclusive with 'deployment_id'.
        deployment_id (str, optional): Deployment ID of a tuned model to be used for
            inference. Mutually exclusive with 'model_name'.
        parameters (WMLInferenceEngineParams, optional): Instance of WMLInferenceEngineParams
            which defines inference parameters and their values. Deprecated attribute, please
            pass respective parameters directly to the WMLInferenceEngine class instead.
        concurrency_limit (int): number of requests that will be sent in parallel, max is 10.

    Examples:
        from .api import load_dataset

        wml_credentials = {
            "url": "some_url", "project_id": "some_id", "api_key": "some_key"
        }
        model_name = "google/flan-t5-xxl"
        wml_inference = WMLInferenceEngine(
            credentials=wml_credentials,
            model_name=model_name,
            data_classification_policy=["public"],
            top_p=0.5,
            random_seed=123,
        )

        dataset = load_dataset(
            dataset_query="card=cards.argument_topic,template_card_index=0,loader_limit=5"
        )
        results = wml_inference.infer(dataset["test"])
    """

    credentials: Optional[Dict[Literal["url", "apikey", "project_id"], str]] = None
    model_name: Optional[str] = None
    deployment_id: Optional[str] = None
    label: str = "wml"
    _requirements_list = {
        "ibm-watsonx-ai==1.1.14": "Install ibm-watsonx-ai package using 'pip install --upgrade ibm-watsonx-ai'. "
        "It is advised to have Python version >=3.10 installed, as at lower version this package "
        "may cause conflicts with other installed packages."
    }
    data_classification_policy = ["public", "proprietary"]
    parameters: Optional[WMLInferenceEngineParams] = None
    concurrency_limit: int = 10
    _client: Any = InternalField(default=None, name="WML client")

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, self.label)

    def verify(self):
        super().verify()

        if self.credentials is not None:
            for key in self.credentials:
                if key not in ["url", "apikey", "project_id", "space_id"]:
                    raise ValueError(
                        f'Illegal credential key: {key}, use only ["url", "apikey", "project_id", "space_id"]'
                    )

        assert (
            self.model_name
            or self.deployment_id
            and not (self.model_name and self.deployment_id)
        ), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."

    def process_data_before_dump(self, data):
        if "credentials" in data:
            for key, value in data["credentials"].items():
                if key != "url":
                    data["credentials"][key] = "<hidden>"
                else:
                    data["credentials"][key] = value
        return data

    @staticmethod
    def _read_wml_credentials_from_env() -> (
        Dict[Literal["url", "apikey", "project_id", "space_id"], str]
    ):
        credentials = {}
        project_or_deployment_var_name = (
            "WML_SPACE_ID" if "WML_SPACE_ID" in os.environ else "WML_PROJECT_ID"
        )

        for env_var_name in ["WML_URL", project_or_deployment_var_name, "WML_APIKEY"]:
            env_var = os.environ.get(env_var_name)
            assert env_var, (
                f"Error while trying to run 'WMLInferenceEngine'. "
                f"Please set the env variable: '{env_var_name}', or "
                f"directly provide an instance of ibm-watsonx-ai 'Credentials' "
                f"to the engine."
            )

            name = env_var_name.lower().replace("wml_", "")
            credentials[name] = env_var

        return credentials

    def _initialize_wml_client(self):
        from ibm_watsonx_ai.client import APIClient

        if self.credentials is None:
            self.credentials = self._read_wml_credentials_from_env()

        client = APIClient(credentials=self.credentials)
        if "space_id" in self.credentials:
            client.set.default_space(self.credentials["space_id"])
        else:
            client.set.default_project(self.credentials["project_id"])
        return client

    def prepare_engine(self):
        self._client = self._initialize_wml_client()

        self._set_inference_parameters()

    def _load_model_and_params(self):
        from ibm_watsonx_ai.foundation_models import ModelInference

        model = ModelInference(
            model_id=self.model_name,
            deployment_id=self.deployment_id,
            api_client=self._client,
        )
        params = self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False)

        return model, params

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        self.verify_not_chat_api(dataset)
        model, params = self._load_model_and_params()

        result = []
        for source in dataset["source"]:
            instance_result = model.generate(
                prompt=source,
                params=self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False),
            )
            prediction = instance_result["results"][0]["generated_text"]
            instance_final_results = self.get_return_object(
                prediction, instance_result, return_meta_data
            )
            result.append(instance_final_results)

        return result

    def _infer_log_probs(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
        self.verify_not_chat_api(dataset)

        model, params = self._load_model_and_params()

        user_return_options = params.pop("return_options", {})
        # currently this is the only configuration that returns generated logprobs and behaves as expected
        logprobs_return_options = {
            "input_tokens": True,
            "generated_tokens": True,
            "token_logprobs": True,
            "top_n_tokens": user_return_options.get("top_n_tokens", 5),
        }
        for key, value in logprobs_return_options.items():
            if key in user_return_options and user_return_options[key] != value:
                raise ValueError(
                    f"'{key}={user_return_options[key]}' is not supported for the 'infer_log_probs' "
                    f"method of {self.__class__.__name__}. For obtaining the logprobs of generated tokens "
                    f"please use '{key}={value}'."
                )

        params = {
            **params,
            "return_options": logprobs_return_options,
        }

        results = model.generate(
            prompt=[instance["source"] for instance in dataset],
            params=params,
        )
        final_results = []
        for result in results:
            generated_tokens = result["results"][0]["generated_tokens"]
            final_results.append(
                self.get_return_object(generated_tokens, result, return_meta_data)
            )
        return final_results

    def get_return_object(self, predict_result, result, return_meta_data):
        if return_meta_data:
            return TextGenerationInferenceOutput(
                prediction=predict_result,
                input_tokens=result["results"][0]["input_token_count"],
                output_tokens=result["results"][0]["generated_token_count"],
                model_name=self.model_name,
                inference_type=self.label,
            )
        return predict_result

    def get_token_count(self, dataset):
        from ibm_watsonx_ai.foundation_models import ModelInference

        texts = [instance["source"] for instance in dataset]

        model = ModelInference(
            model_id=self.model_name,
            deployment_id=self.deployment_id,
            api_client=self._client,
        )

        for i in trange(len(texts), desc="Tokenizing"):
            response = model.tokenize(prompt=texts[i], return_tokens=True)["result"]
            dataset[i]["token_count"] = response["token_count"]

        return dataset

    def get_options_log_probs(self, dataset):
        """Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
        from ibm_watsonx_ai.foundation_models import ModelInference

        model = ModelInference(
            model_id=self.model_name,
            deployment_id=self.deployment_id,
            api_client=self._client,
        )

        texts = [x["source"] for x in dataset]

        responses = list(
            tqdm(
                model.generate(
                    prompt=texts,
                    params={
                        "decoding_method": "greedy",
                        "max_new_tokens": 1,
                        "return_options": {
                            "input_tokens": True,
                            "token_logprobs": True,
                        },
                    },
                ),
                total=len(texts),
                desc="Completions",
            )
        )

        scores = [
            [
                {
                    "text": token["text"],
                    "logprob": token["logprob"] if "logprob" in token else 1,
                }
                for token in response["results"][0]["input_tokens"]
            ]
            for response in responses
        ]

        for instance, score in zip(dataset, scores):
            instance["prediction"] = score[instance["task_data"]["token_count"] - 1 :]
        return dataset


def get_images_without_text(instance):
    return extract_images(instance["source"], instance)


def get_text_without_images(instance, image_token="<image>"):
    regex = r"<" + f"{constants.image_tag}" + r'\s+src=["\'](.*?)["\']\s*/?>'
    return re.sub(regex, image_token, instance["source"])


class HFLlavaInferenceEngine(InferenceEngine, LazyLoadMixin):
    model_name: str
    max_new_tokens: int
    lazy_load = True
    image_token = "<image>"

    _requirements_list = {
        "transformers": "Install huggingface package using 'pip install --upgrade transformers",
        "torch": "Install torch, go on PyTorch website for mode details.",
        "accelerate": "pip install accelerate",
    }

    def get_engine_id(self):
        return get_model_and_label_id(self.model_name, "hf_lava")

    def _prepare_engine(self):
        import torch
        from transformers import AutoProcessor, LlavaForConditionalGeneration

        self.device = torch.device(
            "mps"
            if torch.backends.mps.is_available()
            else 0
            if torch.cuda.is_available()
            else "cpu"
        )

        self.model = LlavaForConditionalGeneration.from_pretrained(
            self.model_name,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
        ).to(self.device)

        self.processor = AutoProcessor.from_pretrained(self.model_name)

    def prepare_engine(self):
        if not self.lazy_load:
            self._prepare_engine()

    def _is_loaded(self):
        return hasattr(self, "model") and self.model is not None

    def _get_input(self, instance):
        assert isinstance(instance["source"], list), "Must use format=formats.chat_api"
        images = []
        conversation = []
        for turn in instance["source"]:
            if isinstance(turn["content"], list):
                for content in turn["content"]:
                    if content["type"] == "image_url":
                        content["type"] = "image"
                        image_url = content.pop("image_url")["url"]
                        image = data_url_to_image(image_url)
                        images.append(image)
            conversation.append(turn)
        return conversation, images

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        if not self._is_loaded():
            self._prepare_engine()

        import torch

        results = []
        for instance in tqdm(dataset):
            conversation, images = self._get_input(instance)

            if len(images) == 1:
                images = images[0]

            text = self.processor.apply_chat_template(
                conversation, add_generation_prompt=True
            )

            inputs = self.processor(images=images, text=text, return_tensors="pt").to(
                self.device, torch.float16
            )

            input_len = len(inputs["input_ids"][0])
            output = self.model.generate(
                **inputs,
                max_new_tokens=self.max_new_tokens,
                do_sample=False,
                pad_token_id=self.processor.tokenizer.eos_token_id,
            )
            result = self.processor.decode(
                output[0][input_len:], skip_special_tokens=True
            )
            results.append(result)

        return results


class LMMSEvalBaseInferenceEngine(
    InferenceEngine, PackageRequirementsMixin, LazyLoadMixin
):
    model_type: str
    model_args: Dict[str, str]
    batch_size: int = 1
    image_token = "<image>"

    _requirements_list = ["lmms-eval==0.2.4"]

    def prepare_engine(self):
        if not self.lazy_load:
            self._prepare_engine()

    def _prepare_engine(self):
        import torch
        from lmms_eval.api.instance import Instance
        from lmms_eval.models import get_model

        self.new_instance = Instance

        self.device = torch.device(
            "mps"
            if torch.backends.mps.is_available()
            else "cuda"
            if torch.cuda.is_available()
            else "cpu"
        )

        if isinstance(self.model_args, dict):
            self.model_args = ",".join(f"{k}={v}" for k, v in self.model_args.items())

        self.model = get_model(self.model_type).create_from_arg_string(
            self.model_args,
            {
                "batch_size": self.batch_size,
                "device": self.device,
            },
        )

    def _is_loaded(self):
        return hasattr(self, "model") and self.model is not None


class LMMSEvalInferenceEngine(LMMSEvalBaseInferenceEngine):
    max_new_tokens: int = 32
    temperature: float = 0.0
    do_sample: bool = False
    generate_until: List[str] = ["\n\n"]

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        self.verify_not_chat_api(dataset)
        if not self._is_loaded():
            self._prepare_engine()

        from lmms_eval.api.instance import Instance

        temp_task_name = str(uuid.uuid4())

        requests = []
        for i, instance in enumerate(dataset):
            requests.append(
                Instance(
                    request_type="generate_until",
                    arguments=(
                        get_text_without_images(instance, image_token=self.image_token),
                        {
                            "max_new_tokens": self.max_new_tokens,
                            "temperature": self.temperature,
                            "do_sample": self.do_sample,
                            "until": self.generate_until,
                        },
                        get_images_without_text,
                        i,
                        temp_task_name,
                        "test",
                    ),
                    idx=i,
                    metadata={
                        "task": temp_task_name,
                        "doc_id": i,
                        "repeats": 1,
                    },
                )
            )

        self.model.task_dict[temp_task_name] = DatasetDict({"test": dataset})

        responses = self.model.generate_until(requests)

        self.model.task_dict.pop(temp_task_name)

        return responses


class LMMSEvalLoglikelihoodInferenceEngine(LMMSEvalBaseInferenceEngine):
    request_type: Literal["loglikelihood"] = "loglikelihood"

    def make_instance(self, instance, special_args, index, task_name):
        from lmms_eval.api.instance import Instance

        return Instance(
            request_type=self.request_type,
            arguments=(
                get_text_without_images(instance, image_token=self.image_token),
                special_args,
                get_images_without_text,
                index,
                task_name,
                "test",
            ),
            idx=index,
            metadata={
                "task": task_name,
                "doc_id": index,
                "repeats": 1,
            },
        )

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        if not self._is_loaded():
            self._prepare_engine()

        temp_task_name = str(uuid.uuid4())

        requests = []
        for i, instance in enumerate(dataset):
            task_data = instance["task_data"]

            if isinstance(task_data, str):
                task_data = json.loads(task_data)

            for option in task_data["options"]:
                requests.append(
                    self.make_instance(
                        instance,
                        option,
                        i,
                        temp_task_name,
                    )
                )

        self.model.task_dict[temp_task_name] = DatasetDict({"test": dataset})
        self.model.metadata = {}

        responses = self.model.loglikelihood(requests)

        self.model.task_dict.pop(temp_task_name)

        optimal_scores = [sys.float_info.max] * len(dataset)
        optimal_responses = [None] * len(dataset)

        for request, (score, _) in zip(requests, responses):
            if score < optimal_scores[request.idx]:
                optimal_scores[request.idx] = score
                optimal_responses[request.idx] = request.arguments[1]

        return optimal_responses


class VLLMInferenceEngine(
    InferenceEngine, PackageRequirementsMixin, StandardAPIParamsMixin
):
    def prepare_engine(self):
        from vllm import LLM, SamplingParams

        args = self.to_dict([StandardAPIParamsMixin])
        self.sampling_params = SamplingParams(**args)
        self.llm = LLM(model=self.model)

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        inputs = []
        for instance in dataset:
            inputs.append(instance["source"])

        if isinstance(inputs[0], list):
            outputs = self.llm.chat(inputs, self.sampling_params)
        else:
            outputs = self.llm.generate(inputs, self.sampling_params)

        predictions = []
        for output in outputs:
            predictions.append(output.outputs[0].text)

        return predictions


class AsyncTokenBucket:
    def __init__(self, rate, capacity):
        self.rate = rate  # Tokens added per second
        self.capacity = capacity  # Maximum tokens in the bucket
        self.tokens = capacity
        self.timestamp = time.perf_counter()
        self.lock = asyncio.Lock()
        self.interval = 1.0 / self.rate  # Time between tokens

    async def acquire(self, tokens=1):
        while True:
            async with self.lock:
                now = time.perf_counter()
                delta = now - self.timestamp

                # Calculate the number of tokens to add
                token_intervals = int(delta / self.interval)
                if token_intervals > 0:
                    self.tokens = min(self.capacity, self.tokens + token_intervals)
                    self.timestamp += token_intervals * self.interval
                    logging.debug(
                        f"Added {token_intervals} tokens. Tokens now: {self.tokens}"
                    )

                if self.tokens >= tokens:
                    self.tokens -= tokens
                    logging.debug(f"Token acquired. Tokens left: {self.tokens}")
                    return
                # Calculate time until the next token is available
                time_until_next_token = self.interval - (now - self.timestamp)
                logging.debug(
                    f"Not enough tokens. Need to wait {time_until_next_token:.4f} seconds."
                )
            # Sleep outside the lock to allow other coroutines to proceed
            await asyncio.sleep(time_until_next_token)


class LiteLLMInferenceEngine(
    InferenceEngine, StandardAPIParamsMixin, PackageRequirementsMixin
):
    max_requests_per_second: float = 6
    max_retries: int = 5  # Set to 0 to prevent internal retries

    _requirements_list: list = ["litellm", "tenacity", "tqdm", "diskcache"]

    def prepare_engine(self):
        # Initialize the token bucket rate limiter
        self._rate_limiter = AsyncTokenBucket(
            rate=self.max_requests_per_second,
            capacity=self.max_requests_per_second,
        )
        self.inference_type = "litellm"
        import litellm
        from litellm import acompletion
        from litellm.caching.caching import Cache

        litellm.cache = Cache(type="disk")

        self._completion = acompletion
        # Initialize a semaphore to limit concurrency
        self._semaphore = asyncio.Semaphore(self.max_requests_per_second)

    async def _infer_instance(
        self, index: int, instance: Dict[str, Any]
    ) -> TextGenerationInferenceOutput:
        """Process a single inference request."""
        async with self._semaphore:
            await self._rate_limiter.acquire()
            # Introduce a slight delay to prevent burstiness
            await asyncio.sleep(0.01)
            messages = self.to_messages(instance)
            kwargs = self.to_dict([StandardAPIParamsMixin])
            try:
                response = await self._completion(
                    messages=messages,
                    max_retries=self.max_retries,
                    caching=True,
                    **kwargs,
                )
            except Exception as e:
                raise RuntimeError(
                    f"Error inferring the following instance:\n{instance}"
                ) from e

            usage = response.get("usage", {})
            return TextGenerationInferenceOutput(
                prediction=response["choices"][0]["message"]["content"],
                input_tokens=usage.get("prompt_tokens"),
                output_tokens=usage.get("completion_tokens"),
                model_name=response.get("model", self.model),
                inference_type=self.inference_type,
            )

    async def _infer_async(
        self, dataset: List[Dict[str, Any]]
    ) -> List[TextGenerationInferenceOutput]:
        """Process multiple inference requests concurrently with a progress bar."""
        tasks = [
            self._infer_instance(i, instance) for i, instance in enumerate(dataset)
        ]
        # Use tqdm_asyncio.gather to display progress bar
        return await tqdm_asyncio.gather(
            *tasks, desc=f"LiteLLM Inference ({self.model})", total=len(tasks)
        )

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], "DatasetDict"],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        """Main inference entry point."""
        loop = asyncio.get_event_loop()
        responses = loop.run_until_complete(self._infer_async(dataset))

        if return_meta_data:
            return responses

        return [response.prediction for response in responses]


_supported_apis = Literal[
    "watsonx", "together-ai", "open-ai", "aws", "ollama", "bam", "watsonx-sdk"
]


class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
    """Inference engine capable of dynamically switching between multiple providers APIs.

    This class extends the InferenceEngine and OpenAiInferenceEngineParamsMixin
    to enable seamless integration with various API providers. The supported APIs are
    specified in `_supported_apis`, allowing users to interact with multiple models
    from different sources. The `api_model_map` dictionary maps each API to
    specific model identifiers, enabling automatic configuration based on
    user requests.

    Attributes:
        provider: Optional; Specifies the current API in use. Must be one of the
            literals in `_supported_apis`.
        provider_model_map: Dictionary mapping each supported API to a corresponding
            model identifier string. This mapping allows consistent access to models
            across different API backends.
    """

    provider: Optional[_supported_apis] = None

    provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
        "watsonx": {
            "llama-3-8b-instruct": "watsonx/meta-llama/llama-3-8b-instruct",
            "llama-3-70b-instruct": "watsonx/meta-llama/llama-3-70b-instruct",
            "granite-3-8b-instruct": "watsonx/ibm/granite-3-8b-instruct",
            "flan-t5-xxl": "watsonx/google/flan-t5-xxl",
            "llama-3-2-1b-instruct": "watsonx/meta-llama/llama-3-2-1b-instruct",
        },
        "watsonx-sdk": {
            "llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
            "llama-3-70b-instruct": "meta-llama/llama-3-70b-instruct",
            "granite-3-8b-instruct": "ibm/granite-3-8b-instruct",
        },
        "together-ai": {
            "llama-3-8b-instruct": "together_ai/togethercomputer/llama-3-8b-instruct",
            "llama-3-70b-instruct": "together_ai/togethercomputer/llama-3-70b-instruct",
            "llama-3-2-1b-instruct": "together_ai/togethercomputer/llama-3-2-1b-instruct",
        },
        "aws": {
            "llama-3-8b-instruct": "bedrock/meta.llama3-8b-instruct-v1:0",
            "llama-3-70b-instruct": "bedrock/meta.llama3-70b-instruct-v1:0",
        },
        "ollama": {
            "llama-3-8b-instruct": "llama3:8b",
            "llama-3-70b-instruct": "llama3:70b",
        },
        "bam": {
            "granite-3-8b-instruct": "ibm/granite-8b-instruct-preview-4k",
            "llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
            "llama-3-2-1b-instruct": "meta-llama/llama-3-2-1b-instruct",
            "flan-t5-xxl": "google/flan-t5-xxl",
        },
    }

    _provider_to_base_class = {
        "watsonx": LiteLLMInferenceEngine,
        "open-ai": LiteLLMInferenceEngine,
        "together-ai": LiteLLMInferenceEngine,
        "aws": LiteLLMInferenceEngine,
        "ollama": OllamaInferenceEngine,
        "bam": IbmGenAiInferenceEngine,
        "watsonx-sdk": WMLInferenceEngine,
    }

    _provider_param_renaming = {
        "bam": {"max_tokens": "max_new_tokens", "model": "model_name"},
        "watsonx-sdk": {"max_tokens": "max_new_tokens", "model": "model_name"},
    }

    def get_provider_name(self):
        return self.provider if self.provider is not None else settings.default_provider

    def prepare_engine(self):
        provider = self.get_provider_name()
        if provider not in self._provider_to_base_class:
            raise UnitxtError(
                f"{provider} a known API. Supported apis: {','.join(self.provider_model_map.keys())}"
            )
        if self.model not in self.provider_model_map[provider]:
            raise UnitxtError(
                f"{self.model} is not configured for provider {provider}. Supported models: {','.join(self.provider_model_map[provider].keys())}"
            )
        cls = self.__class__._provider_to_base_class[provider]
        args = self.to_dict([StandardAPIParamsMixin])
        args["model"] = self.provider_model_map[provider][self.model]
        params = list(args.keys())
        if provider in self._provider_param_renaming:
            for param in params:
                if args[param] is not None:
                    if param in self._provider_param_renaming[provider]:
                        args[self._provider_param_renaming[provider][param]] = args[
                            param
                        ]
                        del args[param]
                else:
                    del args[param]
        self.engine = cls(**args)

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        return self.engine._infer(dataset, return_meta_data)

    def get_engine_id(self):
        api = self.get_provider_name()
        return get_model_and_label_id(self.provider_model_map[api][self.model], api)


class HFOptionSelectingInferenceEngine(InferenceEngine):
    """HuggingFace based class for inference engines that calculate log probabilities.

    This class uses models from the HuggingFace Transformers library to calculate log probabilities for text inputs.
    """

    model_name: str
    batch_size: int

    _requirements_list = {
        "transformers": "Install huggingface package using 'pip install --upgrade transformers"
    }

    def prepare_engine(self):
        import torch
        from transformers import AutoModelForCausalLM, AutoTokenizer

        self.device = torch.device(
            "mps"
            if torch.backends.mps.is_available()
            else "cuda"
            if torch.cuda.is_available()
            else "cpu"
        )

        # Load model and tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name).to(
            self.device
        )
        # Set pad_token if it doesn't exist
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token

    def get_log_probs(self, texts):
        # Check available device
        import torch
        from tqdm import tqdm

        log_probs = []

        # Process texts in batches
        for i in tqdm(range(0, len(texts), self.batch_size)):
            batch = texts[i : i + self.batch_size]

            # Tokenize batch
            if isinstance(texts[0], list):
                batch = self.tokenizer.apply_chat_template(batch, tokenize=False)

            inputs = self.tokenizer(
                batch, return_tensors="pt", padding=True, truncation=True
            ).to(self.device)

            # Compute log probabilities
            with torch.no_grad():
                predictions = self.model(**inputs)
                logits = predictions.logits

                for j in range(len(batch)):
                    input_ids = inputs.input_ids[j]
                    text_logits = logits[j, :-1, :]  # exclude last token
                    text_log_probs = torch.log_softmax(text_logits, dim=-1)

                    # Gather log probs for each token
                    token_log_probs = text_log_probs[
                        torch.arange(text_logits.shape[0]), input_ids[1:]
                    ]

                    # Sum log probs to get sequence log prob
                    sequence_log_prob = token_log_probs.sum().item()
                    log_probs.append(sequence_log_prob)

        return log_probs

    def _infer(
        self,
        dataset: Union[List[Dict[str, Any]], DatasetDict],
        return_meta_data: bool = False,
    ) -> Union[List[str], List[TextGenerationInferenceOutput]]:
        inputs = []

        for instance in dataset:
            for option in instance["task_data"]["options"]:
                if isinstance(instance["source"], list):
                    inputs.append(
                        instance["source"] + [{"role": "assistant", "content": option}]
                    )
                else:
                    inputs.append(instance["source"] + option)

        scores = self.get_log_probs(inputs)

        scores_iterator = iter(scores)

        predictions = []
        for instance in dataset:
            options_scores = Counter()
            for option in instance["task_data"]["options"]:
                score = next(scores_iterator)
                options_scores[option] = score
            predictions.append(options_scores.most_common(1)[0][0])

        return predictions