File size: 70,978 Bytes
fe8dcb5 fe70438 cc5f321 fe70438 59be457 d08fbc6 fe70438 b462f85 fe8dcb5 cc5f321 fe70438 058c80a fe70438 d08fbc6 f6ebc4f fe70438 f6ebc4f 59be457 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 fe8dcb5 cc5f321 fe70438 fe8dcb5 cc5f321 fe8dcb5 7cdc7d0 fe70438 7cdc7d0 cc5f321 0a1b314 7cdc7d0 fe70438 cc5f321 fe70438 cc5f321 fe8dcb5 f6ebc4f fe70438 fe8dcb5 058c80a cc5f321 058c80a cc5f321 058c80a cc5f321 058c80a cc5f321 058c80a cc5f321 058c80a cc5f321 058c80a d08fbc6 fe8dcb5 b462f85 fe70438 4d23392 59be457 fe8dcb5 cc5f321 fe70438 4d23392 b462f85 fe70438 fe8dcb5 b462f85 fe70438 b462f85 fe8dcb5 7cdc7d0 4d23392 d08fbc6 4d23392 cc5f321 fe70438 d08fbc6 4d23392 b462f85 fe70438 b462f85 cc5f321 b462f85 7cdc7d0 b462f85 fe70438 cc5f321 fe70438 59be457 7cdc7d0 f6ebc4f b462f85 f6ebc4f b462f85 f6ebc4f 59be457 f6ebc4f 59be457 f6ebc4f 59be457 f6ebc4f 59be457 fe70438 7cdc7d0 fe70438 7cdc7d0 cc5f321 7cdc7d0 fe70438 7cdc7d0 cc5f321 fe70438 cc5f321 7cdc7d0 cc5f321 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 f6ebc4f cc5f321 fe70438 f6ebc4f 59be457 4d23392 fe70438 59be457 0a1b314 f6ebc4f 59be457 cc5f321 7cdc7d0 59be457 7cdc7d0 59be457 100c2eb 59be457 f6ebc4f cc5f321 59be457 b462f85 f6ebc4f b462f85 cc5f321 59be457 cc5f321 59be457 fe70438 59be457 f6ebc4f 7cdc7d0 f6ebc4f 7cdc7d0 f6ebc4f b462f85 59be457 058c80a f6ebc4f 7cdc7d0 f6ebc4f 7cdc7d0 f6ebc4f 59be457 058c80a f6ebc4f 058c80a 59be457 4d23392 59be457 058c80a f6ebc4f 59be457 cc5f321 59be457 cc5f321 59be457 cc5f321 59be457 cc5f321 59be457 cc5f321 59be457 cc5f321 f6ebc4f 7cdc7d0 cc5f321 058c80a fe70438 058c80a fe70438 058c80a 7cdc7d0 058c80a cc5f321 058c80a cc5f321 058c80a 59be457 7cdc7d0 058c80a cc5f321 058c80a cc5f321 058c80a cc5f321 058c80a 7cdc7d0 cc5f321 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 cc5f321 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 fe70438 7cdc7d0 cc5f321 f6ebc4f 058c80a f6ebc4f 058c80a f6ebc4f cc5f321 fe70438 f6ebc4f 058c80a 9d5b4c0 058c80a f6ebc4f 7cdc7d0 058c80a f6ebc4f 058c80a 9d5b4c0 058c80a 4d23392 fe70438 058c80a 9d5b4c0 f6ebc4f 7cdc7d0 9d5b4c0 cc5f321 9d5b4c0 cc5f321 9d5b4c0 cc5f321 9d5b4c0 058c80a 9d5b4c0 cc5f321 9d5b4c0 058c80a cc5f321 058c80a cc5f321 058c80a 7cdc7d0 9d5b4c0 f6ebc4f 058c80a cc5f321 058c80a 9d5b4c0 058c80a cc5f321 058c80a cc5f321 7cdc7d0 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 7cdc7d0 cc5f321 fe70438 cc5f321 7cdc7d0 cc5f321 d08fbc6 fe70438 d08fbc6 fe70438 d08fbc6 cc5f321 d08fbc6 7cdc7d0 d08fbc6 fe70438 cc5f321 d08fbc6 cc5f321 fe70438 d08fbc6 fe70438 d08fbc6 cc5f321 d08fbc6 fe70438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 |
import abc
import asyncio
import dataclasses
import json
import logging
import os
import re
import sys
import time
import uuid
from collections import Counter
from typing import Any, Dict, List, Literal, Optional, Union
from datasets import DatasetDict
from tqdm import tqdm, trange
from tqdm.asyncio import tqdm_asyncio
from .artifact import Artifact
from .dataclass import InternalField, NonPositionalField
from .deprecation_utils import deprecation
from .error_utils import UnitxtError
from .image_operators import data_url_to_image, extract_images
from .logging_utils import get_logger
from .operator import PackageRequirementsMixin
from .operators import ArtifactFetcherMixin
from .settings_utils import get_constants, get_settings
constants = get_constants()
settings = get_settings()
logger = get_logger()
class StandardAPIParamsMixin(Artifact):
model: str
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
max_tokens: Optional[int] = None
seed: Optional[int] = None
stop: Union[Optional[str], List[str]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_logprobs: Optional[int] = None
logit_bias: Optional[Dict[str, int]] = None
logprobs: Optional[bool] = None
n: Optional[int] = None
parallel_tool_calls: Optional[bool] = None
service_tier: Optional[Literal["auto", "default"]] = None
def get_model_and_label_id(model_name, label):
model_id = model_name.split("/")[-1].replace("-", "_").replace(".", ",").lower()
return f"{model_id}_{label}"
@dataclasses.dataclass
class TextGenerationInferenceOutput:
"""Contains the prediction results and metadata for the inference.
Args:
prediction (Union[str, List[Dict[str, Any]]]): If this is the result of an _infer call, the string predicted by the model.
If this is the results of an _infer_log_probs call, a list of dictionaries. The i'th dictionary represents
the i'th token in the response. The entry "top_tokens" in the dictionary holds a sorted list of the top tokens
for this position and their probabilities.
For example: [ {.. "top_tokens": [ {"text": "a", 'logprob': }, {"text": "b", 'logprob': } ....]},
{.. "top_tokens": [ {"text": "c", 'logprob': }, {"text": "d", 'logprob': } ....]}
]
input_tokens (int) : number of input tokens to the model.
output_tokens (int) : number of output tokens to the model.
model_name (str): the model_name as kept in the InferenceEngine.
inference_type (str): The label stating the type of the InferenceEngine.
"""
prediction: Union[str, List[Dict[str, Any]]]
input_tokens: Optional[int] = None
output_tokens: Optional[int] = None
model_name: Optional[str] = None
inference_type: Optional[str] = None
class InferenceEngine(Artifact):
"""Abstract base class for inference."""
@abc.abstractmethod
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
"""Perform inference on the input dataset.
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string.
return_meta_data is only supported for some InferenceEngines.
predictions.
"""
pass
@abc.abstractmethod
def prepare_engine(self):
"""Perform inference on the input dataset."""
pass
def prepare(self):
if not settings.mock_inference_mode:
super().prepare() # no need to prepare a mock
self.prepare_engine()
def infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
"""Verifies instances of a dataset and perform inference on the input dataset.
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the string
predictions.
"""
if return_meta_data and not hasattr(self, "get_return_object"):
raise NotImplementedError(
f"Inference engine {self.__class__.__name__} does not support return_meta_data as it "
f"does not contain a 'get_return_object' method. Please set return_meta_data=False."
)
[self.verify_instance(instance) for instance in dataset]
if settings.mock_inference_mode:
return self._mock_infer(dataset)
return self._infer(dataset, return_meta_data)
def _mock_infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return [str(instance["source"]) for instance in dataset]
def get_engine_id(self):
raise NotImplementedError()
@deprecation(version="2.0.0")
def _set_inference_parameters(self):
"""Sets inference parameters of an instance based on 'parameters' attribute (if given)."""
if hasattr(self, "parameters") and self.parameters is not None:
get_logger().warning(
f"The 'parameters' attribute of '{self.get_pretty_print_name()}' "
f"is deprecated. Please pass inference parameters directly to the "
f"inference engine instance instead."
)
for param, param_dict_val in self.parameters.to_dict(
[self.parameters]
).items():
param_inst_val = getattr(self, param)
if param_inst_val is None:
setattr(self, param, param_dict_val)
def verify_not_chat_api(self, dataset):
if isinstance(dataset[0]["source"], list):
raise NotImplementedError(
f"Inference engine {self.__class__.__name__} does not support chat api format."
)
def to_messages(self, instance):
if isinstance(instance["source"], list):
return instance["source"]
return [
{
"role": "user",
"content": instance["source"],
}
]
class LogProbInferenceEngine(abc.ABC, Artifact):
"""Abstract base class for inference with log probs."""
@abc.abstractmethod
def _infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
"""Perform inference on the input dataset that returns log probs.
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns a list of the logprob dicts.
return_meta_data is only supported for some InferenceEngines.
predictions.
"""
pass
def infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
"""Verifies instances of a dataset and performs inference that returns log probabilities of top tokens.
For each instance , generates a list of top tokens per position.
[ "top_tokens": [ { "text": ..., "logprob": ...} , ... ]
If return_meta_data - returns a list of TextGenerationInferenceOutput, else returns the list of the logprob dicts.
return_meta_data is only supported for some InferenceEngines.
"""
if return_meta_data and not hasattr(self, "get_return_object"):
raise NotImplementedError(
f"Inference engine {self.__class__.__name__} does not support return_meta_data as it "
f"does not contain a 'get_return_object' method. Please set return_meta_data=False."
)
[self.verify_instance(instance) for instance in dataset]
return self._infer_log_probs(dataset, return_meta_data)
class LazyLoadMixin(Artifact):
lazy_load: bool = NonPositionalField(default=False)
@abc.abstractmethod
def _is_loaded(self):
pass
class HFPipelineBasedInferenceEngine(
InferenceEngine, PackageRequirementsMixin, LazyLoadMixin
):
model_name: str
max_new_tokens: int
use_fp16: bool = True
batch_size: int = 1
top_k: Optional[int] = None
_requirements_list = {
"transformers": "Install huggingface package using 'pip install --upgrade transformers"
}
def get_engine_id(self):
return get_model_and_label_id(self.model_name, "hf_pipeline")
def _get_task(self):
from transformers import AutoConfig
return (
"text2text-generation"
if AutoConfig.from_pretrained(
self.model_name, trust_remote_code=True
).is_encoder_decoder
else "text-generation"
)
def _prepare_pipeline(self):
import torch
from transformers import pipeline
model_args: Dict[str, Any] = (
{"torch_dtype": torch.float16} if self.use_fp16 else {}
)
model_args.update({"max_new_tokens": self.max_new_tokens})
device = torch.device(
"mps"
if torch.backends.mps.is_available()
else 0
if torch.cuda.is_available()
else "cpu"
)
# We do this, because in some cases, using device:auto will offload some weights to the cpu
# (even though the model might *just* fit to a single gpu), even if there is a gpu available, and this will
# cause an error because the data is always on the gpu
if torch.cuda.device_count() > 1:
assert device == torch.device(0)
model_args.update({"device_map": "auto"})
else:
model_args.update({"device": device})
task = self._get_task()
if task == "text-generation":
model_args.update({"return_full_text": False})
self.model = pipeline(
model=self.model_name, trust_remote_code=True, **model_args
)
def prepare_engine(self):
if not self.lazy_load:
self._prepare_pipeline()
def _is_loaded(self):
return hasattr(self, "model") and self.model is not None
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
if self._get_task() == "text2text-generation":
self.verify_not_chat_api(dataset)
if not self._is_loaded():
self._prepare_pipeline()
outputs = []
for output in self.model(
[instance["source"] for instance in dataset],
batch_size=self.batch_size,
top_k=self.top_k,
):
if isinstance(output, list):
output = output[0]
outputs.append(output["generated_text"])
return outputs
class MockInferenceEngine(InferenceEngine):
model_name: str
default_inference_value: str = "[[10]]"
def get_engine_id(self):
return get_model_and_label_id(self.model_name, "mock")
def prepare_engine(self):
return
def _mock_infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return [self.default_inference_value for _ in dataset]
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return self._mock_infer(dataset)
class MockModeMixin(Artifact):
mock_mode: bool = False
class IbmGenAiInferenceEngineParamsMixin(Artifact):
beam_width: Optional[int] = None
decoding_method: Optional[Literal["greedy", "sample"]] = None
include_stop_sequence: Optional[bool] = None
length_penalty: Any = None
max_new_tokens: Optional[int] = None
min_new_tokens: Optional[int] = None
random_seed: Optional[int] = None
repetition_penalty: Optional[float] = None
return_options: Any = None
stop_sequences: Optional[List[str]] = None
temperature: Optional[float] = None
time_limit: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
truncate_input_tokens: Optional[int] = None
typical_p: Optional[float] = None
@deprecation(version="2.0.0", alternative=IbmGenAiInferenceEngineParamsMixin)
class IbmGenAiInferenceEngineParams(Artifact):
beam_width: Optional[int] = None
decoding_method: Optional[Literal["greedy", "sample"]] = None
include_stop_sequence: Optional[bool] = None
length_penalty: Any = None
max_new_tokens: Optional[int] = None
min_new_tokens: Optional[int] = None
random_seed: Optional[int] = None
repetition_penalty: Optional[float] = None
return_options: Any = None
stop_sequences: Optional[List[str]] = None
temperature: Optional[float] = None
time_limit: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
truncate_input_tokens: Optional[int] = None
typical_p: Optional[float] = None
class GenericInferenceEngine(InferenceEngine, ArtifactFetcherMixin):
default: Optional[str] = None
def prepare_engine(self):
if "UNITXT_INFERENCE_ENGINE" in os.environ:
engine_reference = os.environ["UNITXT_INFERENCE_ENGINE"]
else:
assert self.default is not None, (
"GenericInferenceEngine could not be initialized"
'\nThis is since both the "UNITXT_INFERENCE_ENGINE" environmental variable is not set and no default engine was not inputted.'
"\nFor example, you can fix it by setting"
"\nexport UNITXT_INFERENCE_ENGINE=engines.ibm_gen_ai.llama_3_70b_instruct"
"\nto your ~/.bashrc"
"\nor passing a similar required engine in the default argument"
)
engine_reference = self.default
self.engine = self.get_artifact(engine_reference)
def get_engine_id(self):
return "generic_inference_engine"
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return self.engine._infer(dataset)
class OllamaInferenceEngine(
InferenceEngine, StandardAPIParamsMixin, PackageRequirementsMixin
):
label: str = "ollama"
_requirements_list = {
"ollama": "Install ollama package using 'pip install --upgrade ollama"
}
data_classification_policy = ["public", "proprietary"]
def get_engine_id(self):
return get_model_and_label_id(self.model, self.label)
def prepare_engine(self):
pass
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
import ollama
args = self.to_dict([StandardAPIParamsMixin])
results = []
for instance in dataset:
messages = self.to_messages(instance)
response = ollama.chat(
model=self.model,
messages=messages,
**args,
)
results.append(response)
return [element["message"]["content"] for element in results]
class OptionSelectingByLogProbsInferenceEngine:
"""OptionSelectingByLogProbsInferenceEngine inference engine is used to select an option based on the logprobs of an options list conditioned by a prompt.
The inference engines that inherit from this class must implement `get_token_count` and `get_options_log_probs`.
"""
@abc.abstractmethod
def get_token_count(self, dataset):
"""Get the token count of the source key of each dict of the dataset. Add to each instance in the data a "token_count" field.
Args:
dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.
Returns:
List[int]: The token count of the texts
"""
@abc.abstractmethod
def get_options_log_probs(self, dataset):
"""Get the token logprobs of the options of the key task_data.options of each dict of the dataset.
Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}.
Args:
dataset (List[Dict[str, Any]]): A list of dictionaries, each representing a data instance.
Returns:
List[int]: The token count of the texts
"""
def select(self, dataset: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Calculate most likely labels based on log probabilities for a set of fixed completions."""
dataset_with_token_counts = self.get_token_count(dataset)
token_counts = [d["token_count"] for d in dataset_with_token_counts]
# pass in the token count so we only return the option score
dataset_with_options = [
{
"source": instance["source"] + option,
"task_data": {"token_count": token_count},
}
for instance, token_count in zip(dataset, token_counts)
for option in instance["task_data"]["options"]
]
dataset_with_options_logprobs: list[
list[dict[str, float | str]]
] = self.get_options_log_probs(dataset_with_options)
dataset_iterator = iter(dataset_with_options_logprobs)
for instance in dataset:
tokens_with_logprob_list = []
# get the input tokens for the completions of the current resp_idx
for _ in instance["task_data"]["options"]:
tokens_with_logprob = next(dataset_iterator)["prediction"]
tokens_with_logprob_list.append(tokens_with_logprob)
# we start comparing all the options, e.g. if there are five options the value will be [0,1,2,3,4]
to_compare_indexes = list(range(len(instance["task_data"]["options"])))
# token_with_logprob_comp is the logprobs and the text of the tokens
# for each of the options at a specific index
for token_with_logprob_comp in zip(*tokens_with_logprob_list):
tokens_comp = [t["text"] for t in token_with_logprob_comp]
logprobs_comp = [t["logprob"] for t in token_with_logprob_comp]
# Find the maximum value by comparing the logprob of the nth token of non-discarded options
index_max = max(
(
(val, idx)
for idx, val in enumerate(logprobs_comp)
if idx in to_compare_indexes
),
key=lambda x: x[0],
)[1]
# get the token of the biggest logprob
token_value_with_max_logprob = tokens_comp[index_max]
# check that the token is not repeated in the non-discarded options
count = tokens_comp.count(token_value_with_max_logprob)
if count > 1:
# multiple tokens with same max logprob, we need to continue iterating
to_compare_indexes = [
index
for index, token_value in enumerate(tokens_comp)
if token_value == token_value_with_max_logprob
]
continue
# we got the index of the maximum log_prob that doesn't have a duplicated token value at other index
break
if len(to_compare_indexes) > 1:
# multiple options are either equal or have the same token values prefix
# choose the first
index_max = to_compare_indexes[0]
instance["prediction"] = instance["task_data"]["options"][index_max]
return dataset
class IbmGenAiInferenceEngine(
InferenceEngine,
IbmGenAiInferenceEngineParamsMixin,
PackageRequirementsMixin,
LogProbInferenceEngine,
OptionSelectingByLogProbsInferenceEngine,
):
label: str = "ibm_genai"
model_name: str
_requirements_list = {
"ibm-generative-ai": "Install ibm-genai package using 'pip install --upgrade ibm-generative-ai"
}
data_classification_policy = ["public", "proprietary"]
parameters: Optional[IbmGenAiInferenceEngineParams] = None
def get_engine_id(self):
return get_model_and_label_id(self.model_name, self.label)
def prepare_engine(self):
from genai import Client, Credentials
api_key_env_var_name = "GENAI_KEY"
api_key = os.environ.get(api_key_env_var_name)
assert api_key is not None, (
f"Error while trying to run IbmGenAiInferenceEngine."
f" Please set the environment param '{api_key_env_var_name}'."
)
credentials = Credentials(api_key=api_key)
self.client = Client(credentials=credentials)
self._set_inference_parameters()
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
from genai.schema import TextGenerationParameters
genai_params = TextGenerationParameters(
**self.to_dict([IbmGenAiInferenceEngineParamsMixin])
)
results = []
responses = self.client.text.generation.create(
model_id=self.model_name,
inputs=[instance["source"] for instance in dataset],
parameters=genai_params,
)
for response in responses:
generated_text = response.results[0].generated_text
result = self.get_return_object(
generated_text, response.results[0], return_meta_data
)
results.append(result)
return results
def _infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
from genai.schema import TextGenerationParameters
logprobs_return_options = {
"generated_tokens": True,
"input_text": False,
"input_tokens": False,
"token_logprobs": True,
"token_ranks": True,
"top_n_tokens": 5,
}
genai_params = self.to_dict(
[IbmGenAiInferenceEngineParamsMixin], keep_empty=False
)
genai_params = {**genai_params, "return_options": logprobs_return_options}
genai_params = TextGenerationParameters(**genai_params)
predictions = self.client.text.generation.create(
model_id=self.model_name,
inputs=[instance["source"] for instance in dataset],
parameters=genai_params,
)
predict_results = []
for prediction in predictions:
result = prediction.results[0]
assert isinstance(
result.generated_tokens, list
), "result.generated_tokens should be a list"
predict_result = []
for base_token in result.generated_tokens:
res = {**base_token.__dict__, **base_token.model_extra}
res["top_tokens"] = [
{"logprob": top_token.logprob, "text": top_token.text}
for top_token in res["top_tokens"]
]
predict_result.append(res)
final_results = self.get_return_object(
predict_result, result, return_meta_data
)
predict_results.append(final_results)
return predict_results
def get_return_object(self, predict_result, result, return_meta_data):
if return_meta_data:
return TextGenerationInferenceOutput(
prediction=predict_result,
input_tokens=result.input_token_count,
output_tokens=result.generated_token_count,
model_name=self.model_name,
inference_type=self.label,
)
return predict_result
def get_token_count(self, dataset):
texts = [instance["source"] for instance in dataset]
token_counts = list(
tqdm(
[
result.token_count
for response in self.client.text.tokenization.create(
model_id=self.model_name,
input=texts,
execution_options={"ordered": True},
)
for result in response.results
],
desc="Tokenizing",
total=len(texts),
)
)
for i, token_count in enumerate(token_counts):
dataset[i]["token_count"] = token_count
return dataset
def get_options_log_probs(self, dataset):
"""Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
from genai.schema import TextGenerationParameters, TextGenerationReturnOptions
texts = [x["source"] for x in dataset]
responses = tqdm(
self.client.text.generation.create(
model_id=self.model_name,
inputs=texts,
execution_options={"ordered": True},
parameters=TextGenerationParameters(
max_new_tokens=1,
return_options=TextGenerationReturnOptions(
input_tokens=True, token_logprobs=True
),
# random_seed=self.random_state
),
),
total=len(texts),
desc="Completions",
)
scores = [
[
{"text": token.text, "logprob": token.logprob}
for token in response.results[0].input_tokens
]
for response in responses
]
for instance, score in zip(dataset, scores):
instance["prediction"] = score[instance["task_data"]["token_count"] - 1 :]
return dataset
class OpenAiInferenceEngineParamsMixin(Artifact):
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
max_tokens: Optional[int] = None
seed: Optional[int] = None
stop: Union[Optional[str], List[str]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_logprobs: Optional[int] = 20
logit_bias: Optional[Dict[str, int]] = None
logprobs: Optional[bool] = True
n: Optional[int] = None
parallel_tool_calls: Optional[bool] = None
service_tier: Optional[Literal["auto", "default"]] = None
@deprecation(version="2.0.0", alternative=OpenAiInferenceEngineParamsMixin)
class OpenAiInferenceEngineParams(Artifact):
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
max_tokens: Optional[int] = None
seed: Optional[int] = None
stop: Union[Optional[str], List[str]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_logprobs: Optional[int] = 20
logit_bias: Optional[Dict[str, int]] = None
logprobs: Optional[bool] = True
n: Optional[int] = None
parallel_tool_calls: Optional[bool] = None
service_tier: Optional[Literal["auto", "default"]] = None
class OpenAiInferenceEngine(
InferenceEngine,
LogProbInferenceEngine,
OpenAiInferenceEngineParamsMixin,
PackageRequirementsMixin,
):
label: str = "openai"
model_name: str
_requirements_list = {
"openai": "Install openai package using 'pip install --upgrade openai"
}
data_classification_policy = ["public"]
parameters: Optional[OpenAiInferenceEngineParams] = None
def get_engine_id(self):
return get_model_and_label_id(self.model_name, self.label)
@classmethod
def get_api_param(cls, inference_engine: str, api_param_env_var_name: str):
api_key = os.environ.get(api_param_env_var_name)
assert api_key is not None, (
f"Error while trying to run {inference_engine}."
f" Please set the environment param '{api_param_env_var_name}'."
)
return api_key
def create_client(self):
from openai import OpenAI
api_key = self.get_api_param(
inference_engine="OpenAiInferenceEngine",
api_param_env_var_name="OPENAI_API_KEY",
)
return OpenAI(api_key=api_key)
def prepare_engine(self):
self.client = self.create_client()
self._set_inference_parameters()
def _get_completion_kwargs(self):
return {
k: v
for k, v in self.to_dict([OpenAiInferenceEngineParamsMixin]).items()
if v is not None
}
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
outputs = []
for instance in tqdm(dataset, desc="Inferring with openAI API"):
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
messages=messages,
model=self.model_name,
**self._get_completion_kwargs(),
)
prediction = response.choices[0].message.content
output = self.get_return_object(prediction, response, return_meta_data)
outputs.append(output)
return outputs
def _infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
outputs = []
for instance in tqdm(dataset, desc="Inferring with openAI API"):
response = self.client.chat.completions.create(
messages=[
# {
# "role": "system",
# "content": self.system_prompt,
# },
{
"role": "user",
"content": instance["source"],
}
],
model=self.model_name,
**self._get_completion_kwargs(),
)
top_logprobs_response = response.choices[0].logprobs.content
pred_output = [
{
"top_tokens": [
{"text": obj.token, "logprob": obj.logprob}
for obj in generated_token.top_logprobs
]
}
for generated_token in top_logprobs_response
]
output = self.get_return_object(pred_output, response, return_meta_data)
outputs.append(output)
return outputs
def get_return_object(self, predict_result, response, return_meta_data):
if return_meta_data:
return TextGenerationInferenceOutput(
prediction=predict_result,
input_tokens=response.usage.prompt_tokens,
output_tokens=response.usage.completion_tokens,
model_name=self.model_name,
inference_type=self.label,
)
return predict_result
class TogetherAiInferenceEngineParamsMixin(Artifact):
max_tokens: Optional[int] = None
stop: Optional[List[str]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
repetition_penalty: Optional[float] = None
logprobs: Optional[int] = None
echo: Optional[bool] = None
n: Optional[int] = None
min_p: Optional[float] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
class TogetherAiInferenceEngine(
InferenceEngine, TogetherAiInferenceEngineParamsMixin, PackageRequirementsMixin
):
label: str = "together"
model_name: str
_requirements_list = {
"together": "Install together package using 'pip install --upgrade together"
}
data_classification_policy = ["public"]
parameters: Optional[TogetherAiInferenceEngineParamsMixin] = None
def get_engine_id(self):
return get_model_and_label_id(self.model_name, self.label)
def prepare_engine(self):
from together import Together
from together.types.models import ModelType
api_key_env_var_name = "TOGETHER_API_KEY"
api_key = os.environ.get(api_key_env_var_name)
assert api_key is not None, (
f"Error while trying to run TogetherAiInferenceEngine."
f" Please set the environment param '{api_key_env_var_name}'."
)
self.client = Together(api_key=api_key)
self._set_inference_parameters()
# Get model type from Together List Models API
together_models = self.client.models.list()
together_model_id_to_type = {
together_model.id: together_model.type for together_model in together_models
}
model_type = together_model_id_to_type.get(self.model_name)
assert model_type is not None, (
f"Could not find model {self.model_name} " "in Together AI model list"
)
assert model_type in [ModelType.CHAT, ModelType.LANGUAGE, ModelType.CODE], (
f"Together AI model type {model_type} is not supported; "
"supported types are 'chat', 'language' and 'code'."
)
self.model_type = model_type
def _get_infer_kwargs(self):
return {
k: v
for k, v in self.to_dict([TogetherAiInferenceEngineParamsMixin]).items()
if v is not None
}
def _infer_chat(self, instance: Dict[str, Any]) -> str:
messages = self.to_messages(instance)
response = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
**self._get_infer_kwargs(),
)
return response.choices[0].message.content
def _infer_text(self, instance: Dict[str, Any]) -> str:
response = self.client.completions.create(
model=self.model_name,
prompt=instance["source"],
**self._get_infer_kwargs(),
)
return response.choices[0].text
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
from together.types.models import ModelType
outputs = []
if self.model_type == ModelType.CHAT:
for instance in tqdm(dataset, desc="Inferring with Together AI Chat API"):
outputs.append(self._infer_chat(instance))
else:
self.verify_not_chat_api(dataset)
for instance in tqdm(dataset, desc="Inferring with Together AI Text API"):
outputs.append(self._infer_text(instance))
return outputs
class VLLMRemoteInferenceEngine(OpenAiInferenceEngine):
label: str = "vllm"
def create_client(self):
from openai import OpenAI
api_key = self.get_api_param(
inference_engine="VLLMRemoteInferenceEngine",
api_param_env_var_name="VLLM_API_KEY",
)
api_url = self.get_api_param(
inference_engine="VLLMRemoteInferenceEngine",
api_param_env_var_name="VLLM_API_URL",
)
return OpenAI(api_key=api_key, base_url=api_url)
class WMLInferenceEngineParamsMixin(Artifact):
decoding_method: Optional[Literal["greedy", "sample"]] = None
length_penalty: Optional[Dict[str, Union[int, float]]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
random_seed: Optional[int] = None
repetition_penalty: Optional[float] = None
min_new_tokens: Optional[int] = None
max_new_tokens: Optional[int] = None
stop_sequences: Optional[List[str]] = None
time_limit: Optional[int] = None
truncate_input_tokens: Optional[int] = None
prompt_variables: Optional[Dict[str, Any]] = None
return_options: Optional[Dict[str, bool]] = None
@deprecation(version="2.0.0", alternative=WMLInferenceEngineParamsMixin)
class WMLInferenceEngineParams(Artifact):
decoding_method: Optional[Literal["greedy", "sample"]] = None
length_penalty: Optional[Dict[str, Union[int, float]]] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
random_seed: Optional[int] = None
repetition_penalty: Optional[float] = None
min_new_tokens: Optional[int] = None
max_new_tokens: Optional[int] = None
stop_sequences: Optional[List[str]] = None
time_limit: Optional[int] = None
truncate_input_tokens: Optional[int] = None
prompt_variables: Optional[Dict[str, Any]] = None
return_options: Optional[Dict[str, bool]] = None
class WMLInferenceEngine(
InferenceEngine,
WMLInferenceEngineParamsMixin,
PackageRequirementsMixin,
LogProbInferenceEngine,
OptionSelectingByLogProbsInferenceEngine,
):
"""Runs inference using ibm-watsonx-ai.
Attributes:
credentials (Dict[str, str], optional): By default, it is created by a class
instance which tries to retrieve proper environment variables
("WML_URL", "WML_PROJECT_ID", "WML_APIKEY"). However, a dictionary with
the following keys: "url", "apikey", "project_id" can be directly provided
instead.
model_name (str, optional): ID of a model to be used for inference. Mutually
exclusive with 'deployment_id'.
deployment_id (str, optional): Deployment ID of a tuned model to be used for
inference. Mutually exclusive with 'model_name'.
parameters (WMLInferenceEngineParams, optional): Instance of WMLInferenceEngineParams
which defines inference parameters and their values. Deprecated attribute, please
pass respective parameters directly to the WMLInferenceEngine class instead.
concurrency_limit (int): number of requests that will be sent in parallel, max is 10.
Examples:
from .api import load_dataset
wml_credentials = {
"url": "some_url", "project_id": "some_id", "api_key": "some_key"
}
model_name = "google/flan-t5-xxl"
wml_inference = WMLInferenceEngine(
credentials=wml_credentials,
model_name=model_name,
data_classification_policy=["public"],
top_p=0.5,
random_seed=123,
)
dataset = load_dataset(
dataset_query="card=cards.argument_topic,template_card_index=0,loader_limit=5"
)
results = wml_inference.infer(dataset["test"])
"""
credentials: Optional[Dict[Literal["url", "apikey", "project_id"], str]] = None
model_name: Optional[str] = None
deployment_id: Optional[str] = None
label: str = "wml"
_requirements_list = {
"ibm-watsonx-ai==1.1.14": "Install ibm-watsonx-ai package using 'pip install --upgrade ibm-watsonx-ai'. "
"It is advised to have Python version >=3.10 installed, as at lower version this package "
"may cause conflicts with other installed packages."
}
data_classification_policy = ["public", "proprietary"]
parameters: Optional[WMLInferenceEngineParams] = None
concurrency_limit: int = 10
_client: Any = InternalField(default=None, name="WML client")
def get_engine_id(self):
return get_model_and_label_id(self.model_name, self.label)
def verify(self):
super().verify()
if self.credentials is not None:
for key in self.credentials:
if key not in ["url", "apikey", "project_id", "space_id"]:
raise ValueError(
f'Illegal credential key: {key}, use only ["url", "apikey", "project_id", "space_id"]'
)
assert (
self.model_name
or self.deployment_id
and not (self.model_name and self.deployment_id)
), "Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
def process_data_before_dump(self, data):
if "credentials" in data:
for key, value in data["credentials"].items():
if key != "url":
data["credentials"][key] = "<hidden>"
else:
data["credentials"][key] = value
return data
@staticmethod
def _read_wml_credentials_from_env() -> (
Dict[Literal["url", "apikey", "project_id", "space_id"], str]
):
credentials = {}
project_or_deployment_var_name = (
"WML_SPACE_ID" if "WML_SPACE_ID" in os.environ else "WML_PROJECT_ID"
)
for env_var_name in ["WML_URL", project_or_deployment_var_name, "WML_APIKEY"]:
env_var = os.environ.get(env_var_name)
assert env_var, (
f"Error while trying to run 'WMLInferenceEngine'. "
f"Please set the env variable: '{env_var_name}', or "
f"directly provide an instance of ibm-watsonx-ai 'Credentials' "
f"to the engine."
)
name = env_var_name.lower().replace("wml_", "")
credentials[name] = env_var
return credentials
def _initialize_wml_client(self):
from ibm_watsonx_ai.client import APIClient
if self.credentials is None:
self.credentials = self._read_wml_credentials_from_env()
client = APIClient(credentials=self.credentials)
if "space_id" in self.credentials:
client.set.default_space(self.credentials["space_id"])
else:
client.set.default_project(self.credentials["project_id"])
return client
def prepare_engine(self):
self._client = self._initialize_wml_client()
self._set_inference_parameters()
def _load_model_and_params(self):
from ibm_watsonx_ai.foundation_models import ModelInference
model = ModelInference(
model_id=self.model_name,
deployment_id=self.deployment_id,
api_client=self._client,
)
params = self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False)
return model, params
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
self.verify_not_chat_api(dataset)
model, params = self._load_model_and_params()
result = []
for source in dataset["source"]:
instance_result = model.generate(
prompt=source,
params=self.to_dict([WMLInferenceEngineParamsMixin], keep_empty=False),
)
prediction = instance_result["results"][0]["generated_text"]
instance_final_results = self.get_return_object(
prediction, instance_result, return_meta_data
)
result.append(instance_final_results)
return result
def _infer_log_probs(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[Dict], List[TextGenerationInferenceOutput]]:
self.verify_not_chat_api(dataset)
model, params = self._load_model_and_params()
user_return_options = params.pop("return_options", {})
# currently this is the only configuration that returns generated logprobs and behaves as expected
logprobs_return_options = {
"input_tokens": True,
"generated_tokens": True,
"token_logprobs": True,
"top_n_tokens": user_return_options.get("top_n_tokens", 5),
}
for key, value in logprobs_return_options.items():
if key in user_return_options and user_return_options[key] != value:
raise ValueError(
f"'{key}={user_return_options[key]}' is not supported for the 'infer_log_probs' "
f"method of {self.__class__.__name__}. For obtaining the logprobs of generated tokens "
f"please use '{key}={value}'."
)
params = {
**params,
"return_options": logprobs_return_options,
}
results = model.generate(
prompt=[instance["source"] for instance in dataset],
params=params,
)
final_results = []
for result in results:
generated_tokens = result["results"][0]["generated_tokens"]
final_results.append(
self.get_return_object(generated_tokens, result, return_meta_data)
)
return final_results
def get_return_object(self, predict_result, result, return_meta_data):
if return_meta_data:
return TextGenerationInferenceOutput(
prediction=predict_result,
input_tokens=result["results"][0]["input_token_count"],
output_tokens=result["results"][0]["generated_token_count"],
model_name=self.model_name,
inference_type=self.label,
)
return predict_result
def get_token_count(self, dataset):
from ibm_watsonx_ai.foundation_models import ModelInference
texts = [instance["source"] for instance in dataset]
model = ModelInference(
model_id=self.model_name,
deployment_id=self.deployment_id,
api_client=self._client,
)
for i in trange(len(texts), desc="Tokenizing"):
response = model.tokenize(prompt=texts[i], return_tokens=True)["result"]
dataset[i]["token_count"] = response["token_count"]
return dataset
def get_options_log_probs(self, dataset):
"""Add to each instance in the data a "options_log_prob" field, which is a dict with str as key and a list of {text: str, logprob:float}."""
from ibm_watsonx_ai.foundation_models import ModelInference
model = ModelInference(
model_id=self.model_name,
deployment_id=self.deployment_id,
api_client=self._client,
)
texts = [x["source"] for x in dataset]
responses = list(
tqdm(
model.generate(
prompt=texts,
params={
"decoding_method": "greedy",
"max_new_tokens": 1,
"return_options": {
"input_tokens": True,
"token_logprobs": True,
},
},
),
total=len(texts),
desc="Completions",
)
)
scores = [
[
{
"text": token["text"],
"logprob": token["logprob"] if "logprob" in token else 1,
}
for token in response["results"][0]["input_tokens"]
]
for response in responses
]
for instance, score in zip(dataset, scores):
instance["prediction"] = score[instance["task_data"]["token_count"] - 1 :]
return dataset
def get_images_without_text(instance):
return extract_images(instance["source"], instance)
def get_text_without_images(instance, image_token="<image>"):
regex = r"<" + f"{constants.image_tag}" + r'\s+src=["\'](.*?)["\']\s*/?>'
return re.sub(regex, image_token, instance["source"])
class HFLlavaInferenceEngine(InferenceEngine, LazyLoadMixin):
model_name: str
max_new_tokens: int
lazy_load = True
image_token = "<image>"
_requirements_list = {
"transformers": "Install huggingface package using 'pip install --upgrade transformers",
"torch": "Install torch, go on PyTorch website for mode details.",
"accelerate": "pip install accelerate",
}
def get_engine_id(self):
return get_model_and_label_id(self.model_name, "hf_lava")
def _prepare_engine(self):
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
self.device = torch.device(
"mps"
if torch.backends.mps.is_available()
else 0
if torch.cuda.is_available()
else "cpu"
)
self.model = LlavaForConditionalGeneration.from_pretrained(
self.model_name,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(self.device)
self.processor = AutoProcessor.from_pretrained(self.model_name)
def prepare_engine(self):
if not self.lazy_load:
self._prepare_engine()
def _is_loaded(self):
return hasattr(self, "model") and self.model is not None
def _get_input(self, instance):
assert isinstance(instance["source"], list), "Must use format=formats.chat_api"
images = []
conversation = []
for turn in instance["source"]:
if isinstance(turn["content"], list):
for content in turn["content"]:
if content["type"] == "image_url":
content["type"] = "image"
image_url = content.pop("image_url")["url"]
image = data_url_to_image(image_url)
images.append(image)
conversation.append(turn)
return conversation, images
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
if not self._is_loaded():
self._prepare_engine()
import torch
results = []
for instance in tqdm(dataset):
conversation, images = self._get_input(instance)
if len(images) == 1:
images = images[0]
text = self.processor.apply_chat_template(
conversation, add_generation_prompt=True
)
inputs = self.processor(images=images, text=text, return_tensors="pt").to(
self.device, torch.float16
)
input_len = len(inputs["input_ids"][0])
output = self.model.generate(
**inputs,
max_new_tokens=self.max_new_tokens,
do_sample=False,
pad_token_id=self.processor.tokenizer.eos_token_id,
)
result = self.processor.decode(
output[0][input_len:], skip_special_tokens=True
)
results.append(result)
return results
class LMMSEvalBaseInferenceEngine(
InferenceEngine, PackageRequirementsMixin, LazyLoadMixin
):
model_type: str
model_args: Dict[str, str]
batch_size: int = 1
image_token = "<image>"
_requirements_list = ["lmms-eval==0.2.4"]
def prepare_engine(self):
if not self.lazy_load:
self._prepare_engine()
def _prepare_engine(self):
import torch
from lmms_eval.api.instance import Instance
from lmms_eval.models import get_model
self.new_instance = Instance
self.device = torch.device(
"mps"
if torch.backends.mps.is_available()
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
if isinstance(self.model_args, dict):
self.model_args = ",".join(f"{k}={v}" for k, v in self.model_args.items())
self.model = get_model(self.model_type).create_from_arg_string(
self.model_args,
{
"batch_size": self.batch_size,
"device": self.device,
},
)
def _is_loaded(self):
return hasattr(self, "model") and self.model is not None
class LMMSEvalInferenceEngine(LMMSEvalBaseInferenceEngine):
max_new_tokens: int = 32
temperature: float = 0.0
do_sample: bool = False
generate_until: List[str] = ["\n\n"]
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
self.verify_not_chat_api(dataset)
if not self._is_loaded():
self._prepare_engine()
from lmms_eval.api.instance import Instance
temp_task_name = str(uuid.uuid4())
requests = []
for i, instance in enumerate(dataset):
requests.append(
Instance(
request_type="generate_until",
arguments=(
get_text_without_images(instance, image_token=self.image_token),
{
"max_new_tokens": self.max_new_tokens,
"temperature": self.temperature,
"do_sample": self.do_sample,
"until": self.generate_until,
},
get_images_without_text,
i,
temp_task_name,
"test",
),
idx=i,
metadata={
"task": temp_task_name,
"doc_id": i,
"repeats": 1,
},
)
)
self.model.task_dict[temp_task_name] = DatasetDict({"test": dataset})
responses = self.model.generate_until(requests)
self.model.task_dict.pop(temp_task_name)
return responses
class LMMSEvalLoglikelihoodInferenceEngine(LMMSEvalBaseInferenceEngine):
request_type: Literal["loglikelihood"] = "loglikelihood"
def make_instance(self, instance, special_args, index, task_name):
from lmms_eval.api.instance import Instance
return Instance(
request_type=self.request_type,
arguments=(
get_text_without_images(instance, image_token=self.image_token),
special_args,
get_images_without_text,
index,
task_name,
"test",
),
idx=index,
metadata={
"task": task_name,
"doc_id": index,
"repeats": 1,
},
)
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
if not self._is_loaded():
self._prepare_engine()
temp_task_name = str(uuid.uuid4())
requests = []
for i, instance in enumerate(dataset):
task_data = instance["task_data"]
if isinstance(task_data, str):
task_data = json.loads(task_data)
for option in task_data["options"]:
requests.append(
self.make_instance(
instance,
option,
i,
temp_task_name,
)
)
self.model.task_dict[temp_task_name] = DatasetDict({"test": dataset})
self.model.metadata = {}
responses = self.model.loglikelihood(requests)
self.model.task_dict.pop(temp_task_name)
optimal_scores = [sys.float_info.max] * len(dataset)
optimal_responses = [None] * len(dataset)
for request, (score, _) in zip(requests, responses):
if score < optimal_scores[request.idx]:
optimal_scores[request.idx] = score
optimal_responses[request.idx] = request.arguments[1]
return optimal_responses
class VLLMInferenceEngine(
InferenceEngine, PackageRequirementsMixin, StandardAPIParamsMixin
):
def prepare_engine(self):
from vllm import LLM, SamplingParams
args = self.to_dict([StandardAPIParamsMixin])
self.sampling_params = SamplingParams(**args)
self.llm = LLM(model=self.model)
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
inputs = []
for instance in dataset:
inputs.append(instance["source"])
if isinstance(inputs[0], list):
outputs = self.llm.chat(inputs, self.sampling_params)
else:
outputs = self.llm.generate(inputs, self.sampling_params)
predictions = []
for output in outputs:
predictions.append(output.outputs[0].text)
return predictions
class AsyncTokenBucket:
def __init__(self, rate, capacity):
self.rate = rate # Tokens added per second
self.capacity = capacity # Maximum tokens in the bucket
self.tokens = capacity
self.timestamp = time.perf_counter()
self.lock = asyncio.Lock()
self.interval = 1.0 / self.rate # Time between tokens
async def acquire(self, tokens=1):
while True:
async with self.lock:
now = time.perf_counter()
delta = now - self.timestamp
# Calculate the number of tokens to add
token_intervals = int(delta / self.interval)
if token_intervals > 0:
self.tokens = min(self.capacity, self.tokens + token_intervals)
self.timestamp += token_intervals * self.interval
logging.debug(
f"Added {token_intervals} tokens. Tokens now: {self.tokens}"
)
if self.tokens >= tokens:
self.tokens -= tokens
logging.debug(f"Token acquired. Tokens left: {self.tokens}")
return
# Calculate time until the next token is available
time_until_next_token = self.interval - (now - self.timestamp)
logging.debug(
f"Not enough tokens. Need to wait {time_until_next_token:.4f} seconds."
)
# Sleep outside the lock to allow other coroutines to proceed
await asyncio.sleep(time_until_next_token)
class LiteLLMInferenceEngine(
InferenceEngine, StandardAPIParamsMixin, PackageRequirementsMixin
):
max_requests_per_second: float = 6
max_retries: int = 5 # Set to 0 to prevent internal retries
_requirements_list: list = ["litellm", "tenacity", "tqdm", "diskcache"]
def prepare_engine(self):
# Initialize the token bucket rate limiter
self._rate_limiter = AsyncTokenBucket(
rate=self.max_requests_per_second,
capacity=self.max_requests_per_second,
)
self.inference_type = "litellm"
import litellm
from litellm import acompletion
from litellm.caching.caching import Cache
litellm.cache = Cache(type="disk")
self._completion = acompletion
# Initialize a semaphore to limit concurrency
self._semaphore = asyncio.Semaphore(self.max_requests_per_second)
async def _infer_instance(
self, index: int, instance: Dict[str, Any]
) -> TextGenerationInferenceOutput:
"""Process a single inference request."""
async with self._semaphore:
await self._rate_limiter.acquire()
# Introduce a slight delay to prevent burstiness
await asyncio.sleep(0.01)
messages = self.to_messages(instance)
kwargs = self.to_dict([StandardAPIParamsMixin])
try:
response = await self._completion(
messages=messages,
max_retries=self.max_retries,
caching=True,
**kwargs,
)
except Exception as e:
raise RuntimeError(
f"Error inferring the following instance:\n{instance}"
) from e
usage = response.get("usage", {})
return TextGenerationInferenceOutput(
prediction=response["choices"][0]["message"]["content"],
input_tokens=usage.get("prompt_tokens"),
output_tokens=usage.get("completion_tokens"),
model_name=response.get("model", self.model),
inference_type=self.inference_type,
)
async def _infer_async(
self, dataset: List[Dict[str, Any]]
) -> List[TextGenerationInferenceOutput]:
"""Process multiple inference requests concurrently with a progress bar."""
tasks = [
self._infer_instance(i, instance) for i, instance in enumerate(dataset)
]
# Use tqdm_asyncio.gather to display progress bar
return await tqdm_asyncio.gather(
*tasks, desc=f"LiteLLM Inference ({self.model})", total=len(tasks)
)
def _infer(
self,
dataset: Union[List[Dict[str, Any]], "DatasetDict"],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
"""Main inference entry point."""
loop = asyncio.get_event_loop()
responses = loop.run_until_complete(self._infer_async(dataset))
if return_meta_data:
return responses
return [response.prediction for response in responses]
_supported_apis = Literal[
"watsonx", "together-ai", "open-ai", "aws", "ollama", "bam", "watsonx-sdk"
]
class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
"""Inference engine capable of dynamically switching between multiple providers APIs.
This class extends the InferenceEngine and OpenAiInferenceEngineParamsMixin
to enable seamless integration with various API providers. The supported APIs are
specified in `_supported_apis`, allowing users to interact with multiple models
from different sources. The `api_model_map` dictionary maps each API to
specific model identifiers, enabling automatic configuration based on
user requests.
Attributes:
provider: Optional; Specifies the current API in use. Must be one of the
literals in `_supported_apis`.
provider_model_map: Dictionary mapping each supported API to a corresponding
model identifier string. This mapping allows consistent access to models
across different API backends.
"""
provider: Optional[_supported_apis] = None
provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
"watsonx": {
"llama-3-8b-instruct": "watsonx/meta-llama/llama-3-8b-instruct",
"llama-3-70b-instruct": "watsonx/meta-llama/llama-3-70b-instruct",
"granite-3-8b-instruct": "watsonx/ibm/granite-3-8b-instruct",
"flan-t5-xxl": "watsonx/google/flan-t5-xxl",
"llama-3-2-1b-instruct": "watsonx/meta-llama/llama-3-2-1b-instruct",
},
"watsonx-sdk": {
"llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
"llama-3-70b-instruct": "meta-llama/llama-3-70b-instruct",
"granite-3-8b-instruct": "ibm/granite-3-8b-instruct",
},
"together-ai": {
"llama-3-8b-instruct": "together_ai/togethercomputer/llama-3-8b-instruct",
"llama-3-70b-instruct": "together_ai/togethercomputer/llama-3-70b-instruct",
"llama-3-2-1b-instruct": "together_ai/togethercomputer/llama-3-2-1b-instruct",
},
"aws": {
"llama-3-8b-instruct": "bedrock/meta.llama3-8b-instruct-v1:0",
"llama-3-70b-instruct": "bedrock/meta.llama3-70b-instruct-v1:0",
},
"ollama": {
"llama-3-8b-instruct": "llama3:8b",
"llama-3-70b-instruct": "llama3:70b",
},
"bam": {
"granite-3-8b-instruct": "ibm/granite-8b-instruct-preview-4k",
"llama-3-8b-instruct": "meta-llama/llama-3-8b-instruct",
"llama-3-2-1b-instruct": "meta-llama/llama-3-2-1b-instruct",
"flan-t5-xxl": "google/flan-t5-xxl",
},
}
_provider_to_base_class = {
"watsonx": LiteLLMInferenceEngine,
"open-ai": LiteLLMInferenceEngine,
"together-ai": LiteLLMInferenceEngine,
"aws": LiteLLMInferenceEngine,
"ollama": OllamaInferenceEngine,
"bam": IbmGenAiInferenceEngine,
"watsonx-sdk": WMLInferenceEngine,
}
_provider_param_renaming = {
"bam": {"max_tokens": "max_new_tokens", "model": "model_name"},
"watsonx-sdk": {"max_tokens": "max_new_tokens", "model": "model_name"},
}
def get_provider_name(self):
return self.provider if self.provider is not None else settings.default_provider
def prepare_engine(self):
provider = self.get_provider_name()
if provider not in self._provider_to_base_class:
raise UnitxtError(
f"{provider} a known API. Supported apis: {','.join(self.provider_model_map.keys())}"
)
if self.model not in self.provider_model_map[provider]:
raise UnitxtError(
f"{self.model} is not configured for provider {provider}. Supported models: {','.join(self.provider_model_map[provider].keys())}"
)
cls = self.__class__._provider_to_base_class[provider]
args = self.to_dict([StandardAPIParamsMixin])
args["model"] = self.provider_model_map[provider][self.model]
params = list(args.keys())
if provider in self._provider_param_renaming:
for param in params:
if args[param] is not None:
if param in self._provider_param_renaming[provider]:
args[self._provider_param_renaming[provider][param]] = args[
param
]
del args[param]
else:
del args[param]
self.engine = cls(**args)
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
return self.engine._infer(dataset, return_meta_data)
def get_engine_id(self):
api = self.get_provider_name()
return get_model_and_label_id(self.provider_model_map[api][self.model], api)
class HFOptionSelectingInferenceEngine(InferenceEngine):
"""HuggingFace based class for inference engines that calculate log probabilities.
This class uses models from the HuggingFace Transformers library to calculate log probabilities for text inputs.
"""
model_name: str
batch_size: int
_requirements_list = {
"transformers": "Install huggingface package using 'pip install --upgrade transformers"
}
def prepare_engine(self):
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
self.device = torch.device(
"mps"
if torch.backends.mps.is_available()
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
# Load model and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForCausalLM.from_pretrained(self.model_name).to(
self.device
)
# Set pad_token if it doesn't exist
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def get_log_probs(self, texts):
# Check available device
import torch
from tqdm import tqdm
log_probs = []
# Process texts in batches
for i in tqdm(range(0, len(texts), self.batch_size)):
batch = texts[i : i + self.batch_size]
# Tokenize batch
if isinstance(texts[0], list):
batch = self.tokenizer.apply_chat_template(batch, tokenize=False)
inputs = self.tokenizer(
batch, return_tensors="pt", padding=True, truncation=True
).to(self.device)
# Compute log probabilities
with torch.no_grad():
predictions = self.model(**inputs)
logits = predictions.logits
for j in range(len(batch)):
input_ids = inputs.input_ids[j]
text_logits = logits[j, :-1, :] # exclude last token
text_log_probs = torch.log_softmax(text_logits, dim=-1)
# Gather log probs for each token
token_log_probs = text_log_probs[
torch.arange(text_logits.shape[0]), input_ids[1:]
]
# Sum log probs to get sequence log prob
sequence_log_prob = token_log_probs.sum().item()
log_probs.append(sequence_log_prob)
return log_probs
def _infer(
self,
dataset: Union[List[Dict[str, Any]], DatasetDict],
return_meta_data: bool = False,
) -> Union[List[str], List[TextGenerationInferenceOutput]]:
inputs = []
for instance in dataset:
for option in instance["task_data"]["options"]:
if isinstance(instance["source"], list):
inputs.append(
instance["source"] + [{"role": "assistant", "content": option}]
)
else:
inputs.append(instance["source"] + option)
scores = self.get_log_probs(inputs)
scores_iterator = iter(scores)
predictions = []
for instance in dataset:
options_scores = Counter()
for option in instance["task_data"]["options"]:
score = next(scores_iterator)
options_scores[option] = score
predictions.append(options_scores.most_common(1)[0][0])
return predictions
|