File size: 12,540 Bytes
77ed1a0 ee71e67 8ff6144 24ee9e0 0a1b314 ee71e67 8ff6144 ee71e67 0a1b314 8ff6144 77ed1a0 4d23392 f6ebc4f 4d23392 f6ebc4f 4d23392 ee71e67 77ed1a0 ee71e67 d08fbc6 2109a58 ee71e67 2109a58 ee71e67 d08fbc6 ee71e67 2109a58 ee71e67 24ee9e0 ee71e67 7e5d152 ee71e67 7e5d152 ee71e67 b462f85 2109a58 b462f85 ee71e67 24ee9e0 ee71e67 4d23392 ee71e67 1247c04 8ff6144 4d23392 ee71e67 4d23392 2109a58 4d23392 2109a58 ee71e67 1247c04 ee71e67 f6ebc4f 2109a58 f6ebc4f 24ee9e0 2109a58 ee71e67 2109a58 ee71e67 2109a58 24ee9e0 ee71e67 77ed1a0 ee71e67 4d23392 d08fbc6 4d23392 d08fbc6 4d23392 d08fbc6 4d23392 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import re
from typing import (
Any,
Dict,
List,
Optional,
)
from .dataclass import OptionalField
from .operator import InstanceOperator
from .type_utils import isoftype
class Format(InstanceOperator):
pass
def apply_capital_new_line_notation(text: str) -> str:
r"""Transforms a given string by applying the Capital New Line Notation.
The Capital New Line Notation (\N) is designed to manage newline behavior in a string efficiently.
This custom notation aims to consolidate multiple newline characters (\n) into a single newline under
specific conditions, with tailored handling based on whether there's preceding text. The function
distinguishes between two primary scenarios:
1. If there's text (referred to as a prefix) followed by any number of \n characters and then one or
more \N, the entire sequence is replaced with a single \n. This effectively simplifies multiple
newlines and notation characters into a single newline when there's preceding text.
2. If the string starts with \n characters followed by \N without any text before this sequence, or if
\N is at the very beginning of the string, the sequence is completely removed. This case is
applicable when the notation should not introduce any newlines due to the absence of preceding text.
Args:
text (str): The input string to be transformed, potentially containing the Capital New Line Notation
(\N) mixed with actual newline characters (\n).
Returns:
str: The string after applying the Capital New Line Notation rules, which either consolidates multiple
newlines and notation characters into a single newline when text precedes them, or removes the
notation and any preceding newlines entirely if no text is present before the notation.
Examples:
>>> apply_capital_new_line_notation("Hello World\\n\\n\N")
'Hello World\\n'
>>> apply_capital_new_line_notation("\\n\\n\NGoodbye World")
'Goodbye World'
>>> apply_capital_new_line_notation("\N")
''
"""
# If sequence of \N or \n that ends with \N has no characters before delete it
text = re.sub(r"^(?:\n|\\N)*\\N", "", text)
# Replace every sequence of \N or \n that ends with \N with \n
return re.sub(r"[\n(\\N)]*(\\N)+", r"\n", text)
class BaseFormat(Format):
demos_field: str = "demos"
@staticmethod
def _retrieve_field_and_pop_from_instance(
instance, field_name, do_pop: bool = True
) -> str:
if field_name is not None and field_name in instance:
field_value = instance[field_name]
if do_pop:
instance.pop(field_name)
assert (
field_value is not None
), f"Value in field '{field_name}' should not be none. Received instance: {instance}"
return field_value
return ""
class SystemFormat(BaseFormat):
r"""Generates the whole input to the model, from constant strings that are given as args, and from values found in specified fields of the instance.
Important: formats can use '\N' notations that means new-line if no new-line before and no empty string before.
SystemFormat expects the input instance to contain:
1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task-independent opening text.
2. A field named "source" whose value is a string verbalizing the original values in the instance (as read
from the source dataset), in the context of the underlying task.
3. A field named "instruction" that contains a (non-None) string.
4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source"
and "target", representing a single demo.
5. A field named "target_prefix" that contains a string to prefix the target in each demo, and to end the whole generated prompt
SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites
field "source" of the instance. Formatting is driven by two args: 'demo_format' and 'model_input_format'.
SystemFormat also pops fields "system_prompt", "instruction", "target_prefix", and the field containing the demos out from the input instance.
Args:
demos_field (str): the name of the field that contains the demos, being a list of dicts, each with "source" and "target" keys
demo_format (str): formatting string for a single demo, combining fields "source" and "target"
model_input_format (str) overall product format, combining instruction and source (as read from fields "instruction"
and "source" of the input instance), together with demos (as formatted into one string)
format_args: Dict[str,str]: additional format args to be used when formatting the different format strings
Example:
when input instance:
.. code-block::
{
"source": "1+1",
"target": "2",
"instruction": "Solve the math exercises.",
"demos": [{"source": "1+2", "target": "3"}, {"source": "4-2", "target": "2"}]
}
is processed by
.. code-block::
system_format = SystemFormat(
demos_field="demos",
demo_format="Input: {source}\nOutput: {target}\n\n",
model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ",
)
the resulting instance is:
.. code-block::
{
"target": "2",
"source": "Instruction: Solve the math exercises.\n\nInput: 1+2\nOutput: 3\n\nInput: 4-2\nOutput: 2\n\nInput: 1+1\nOutput: ",
}
"""
demo_format: str = "{source}\\N{target_prefix}{target}\n\n" # example: "User: {source}\nAgent: {target}\n\n"
model_input_format: str = (
"{system_prompt}\\N{instruction}\\N{demos}{source}\\N{target_prefix}"
)
format_args: Dict[str, str] = OptionalField(default_factory=dict)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
assert (
"source" in instance
), f"field 'source' is expected to be in the input instance. Received instance: {instance}"
source = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="source"
)
instruction = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="instruction"
)
target_prefix = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="target_prefix"
)
system_prompt = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="system_prompt"
)
demo_instances = []
if self.demos_field is not None and self.demos_field in instance:
demos = instance[self.demos_field]
assert (
demos is not None and isoftype(demos, List[Dict[str, Any]])
), f"A list of dict-s is expected in field '{self.demos_field}'. Received instance: {instance}"
demo_instances = demos
instance.pop(self.demos_field)
demos_string = ""
for demo_instance in demo_instances:
demo_source = self._retrieve_field_and_pop_from_instance(
instance=demo_instance, field_name="source", do_pop=False
)
demo_target = self._retrieve_field_and_pop_from_instance(
instance=demo_instance, field_name="target", do_pop=False
)
demo_target_prefix = self._retrieve_field_and_pop_from_instance(
instance=demo_instance, field_name="target_prefix", do_pop=False
)
demo_str = self.demo_format.format(
target_prefix=demo_target_prefix,
source=demo_source,
target=demo_target,
**self.format_args,
)
demos_string += demo_str
output = self.model_input_format.format(
system_prompt=system_prompt,
instruction=instruction,
demos=demos_string,
source=source,
target_prefix=target_prefix,
**self.format_args,
)
output = apply_capital_new_line_notation(output)
instance["source"] = output
return instance
class HFSystemFormat(BaseFormat):
r"""Formats the complete input for the model using the HuggingFace chat template of a given model.
HFSystemFormat expects the input instance to contain:
1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task-independent opening text.
2. A field named "source" whose value is a string verbalizing the original values in the instance (as read
from the source dataset), in the context of the underlying task.
3. A field named "instruction" that contains a (non-None) string.
4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source"
and "target", representing a single demo.
5. A field named "target_prefix" that contains a string to prefix the target in each demo, and to end the whole generated prompt.
SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites
field "source" of the instance.
Example:
HFSystemFormat(model_name="HuggingFaceH4/zephyr-7b-beta")
Uses the template defined the in tokenizer_config.json of the model:
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
See more details in https://huggingface.co/docs/transformers/main/en/chat_templating
"""
model_name: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
assert (
"source" in instance
), f"field 'source' is expected to be in the input instance. Received instance: {instance}"
source = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="source"
)
instruction = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="instruction"
)
target_prefix = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="target_prefix"
)
system_prompt = self._retrieve_field_and_pop_from_instance(
instance=instance, field_name="system_prompt"
)
messages = [
{
"role": "system",
"content": system_prompt
+ ("\n" if system_prompt != "" else "")
+ instruction,
},
]
demo_instances = []
if self.demos_field is not None and self.demos_field in instance:
demos = instance[self.demos_field]
assert (
demos is not None and isoftype(demos, List[Dict[str, Any]])
), f"A list of dict-s is expected in field '{self.demos_field}'. Received instance: {instance}"
demo_instances = demos
instance.pop(self.demos_field)
for demo_instance in demo_instances:
messages.extend(
[
{"role": "user", "content": demo_instance["source"]},
{
"role": "assistant",
"content": target_prefix + demo_instance["target"],
},
]
)
messages.extend([{"role": "user", "content": source}])
tokenized_chat = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
instance["source"] = tokenized_chat + target_prefix
return instance
|