File size: 14,670 Bytes
3157b84 fe70438 d08fbc6 6e6d8af 3157b84 6e6d8af fe70438 6e6d8af 058c80a 6fc6810 6e6d8af fe70438 6e6d8af cc5f321 d08fbc6 6e6d8af d08fbc6 100c2eb b462f85 fe70438 6e6d8af d08fbc6 6e6d8af d08fbc6 6e6d8af 100c2eb 6e6d8af fe70438 058c80a cc5f321 058c80a cc5f321 058c80a d08fbc6 058c80a cc5f321 058c80a fe70438 058c80a cc5f321 058c80a cc5f321 058c80a d08fbc6 058c80a d08fbc6 cc5f321 d08fbc6 cc5f321 d08fbc6 cc5f321 d08fbc6 cc5f321 d08fbc6 fe70438 d08fbc6 058c80a d08fbc6 058c80a d08fbc6 058c80a 6e6d8af 6fc6810 6e6d8af d08fbc6 6e6d8af b462f85 058c80a d08fbc6 b462f85 6e6d8af d08fbc6 058c80a d08fbc6 058c80a cc5f321 058c80a 6e6d8af 3157b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import json
import re
from collections import defaultdict
from functools import lru_cache
from statistics import mean
from typing import Any, Dict, Iterable, List, Optional
from datasets import Features, Value
from .dataclass import Dataclass
from .operator import (
InstanceOperator,
MultiStreamOperator,
SequentialOperator,
SequentialOperatorInitializer,
StreamInitializerOperator,
)
from .operators import (
ApplyMetric,
ApplyOperatorsField,
ArtifactFetcherMixin,
FlattenInstances,
RecursiveCopy,
Rename,
)
from .register import _reset_env_local_catalogs, register_all_artifacts
from .schema import UNITXT_DATASET_SCHEMA
from .settings_utils import get_constants, get_settings
from .stream import DynamicStream, MultiStream
from .struct_data_operators import LoadJson
from .utils import recursive_copy
constants = get_constants()
def nan_mean(scores):
return mean(score for score in scores if score == score)
class FromPredictionsAndOriginalData(StreamInitializerOperator):
def zip(self, predictions, references):
for prediction, original in zip(predictions, references):
yield {**original, "prediction": prediction}
def process(
self, predictions: List[str], references: Iterable, split_name: str = "all"
) -> MultiStream:
return MultiStream(
{
split_name: DynamicStream(
self.zip,
gen_kwargs={"predictions": predictions, "references": references},
)
}
)
class DeleteTargetPrefix(InstanceOperator, ArtifactFetcherMixin):
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if "metadata" in instance["task_data"]:
target_prefix = self.get_artifact(
instance["task_data"]["metadata"]["template"]
).target_prefix
if target_prefix is not None and len(target_prefix) > 0:
target_prefix = target_prefix.format(**instance["task_data"])
pattern = rf"^\s*{re.escape(target_prefix)}\s*"
instance["prediction"] = re.sub(pattern, "", instance["prediction"])
return instance
_post_process_steps = SequentialOperator(
steps=[
RecursiveCopy(
field="prediction",
to_field="raw_prediction",
),
RecursiveCopy(
field="references",
to_field="raw_references",
dont_apply_to_streams=[constants.inference_stream],
),
RecursiveCopy(
field="source",
to_field="task_data/source",
),
DeleteTargetPrefix(),
ApplyOperatorsField(
operators_field="postprocessors",
),
RecursiveCopy(
field="prediction",
to_field="processed_prediction",
),
RecursiveCopy(
field="references",
to_field="processed_references",
dont_apply_to_streams=[constants.inference_stream],
),
]
)
@lru_cache(maxsize=None)
def group_str(json_str):
data = json.loads(json_str)
return ",".join(f"{k}:{v}" for k, v in data.items())
class SplitSubsetsAndGroups(MultiStreamOperator):
"""Splits a MultiStream that is small - for metrics, hence: whole stream can sit in memory, split by the value of field 'group'.
Args:
number_of_fusion_generations: int
the value in field group is of the form "sourcen/sourcenminus1/..." describing the sources in which the instance sat
when these were fused, potentially several phases of fusion. the name of the most recent source sits first in this value.
(See BaseFusion and its extensions)
subsets_depth specifies the depth of the prefix by which to split the stream.
"""
subsets_field: str = "subset"
groups_field: str = "groups"
subset_depth: Optional[int] = None
def process(self, multi_stream: MultiStream) -> MultiStream:
result = defaultdict(list)
for stream_name, stream in multi_stream.items():
for i, instance in enumerate(stream):
instance["__idx__"] = i
for field in [self.subsets_field, self.groups_field]:
if field not in instance:
raise ValueError(
f"Field {field} is missing from instance {instance}"
)
subset_stream_name = (
stream_name
+ "://"
+ "/".join(instance[self.subsets_field][: self.subset_depth])
)
result[subset_stream_name].append(instance)
for group in instance[self.groups_field]:
result[subset_stream_name + "?" + group_str(group)].append(instance)
return MultiStream.from_iterables(result, copying=True)
@lru_cache(maxsize=None)
def group_str_to_key_value(group_str):
keys = []
values = []
for k_v in group_str.split(","):
k, v = k_v.split(":")
if v.isdigit():
v = int(v)
keys.append(k)
values.append(v)
if len(keys) == 1:
key = keys[0]
else:
key = tuple(keys)
if len(values) == 1:
value = values[0]
else:
value = tuple(values)
return key, value
@lru_cache(maxsize=None)
def stream_name_to_origin_subset_group(stream_name):
origin, subset_group = stream_name.split("://")
if "?" in subset_group:
subset, group = subset_group.split("?")
else:
subset, group = subset_group, None
return origin, subset, group
class JoinSubsetsAndGroups(MultiStreamOperator):
def process(self, multi_stream: MultiStream) -> MultiStream:
instances = defaultdict(dict)
global_scores = defaultdict(dict)
for stream_name, stream in multi_stream.items():
origin, subset, group = stream_name_to_origin_subset_group(stream_name)
for i, instance in enumerate(stream):
global_score = instance["score"].pop("global")
idx = instance.pop("__idx__")
if idx not in instances[origin]:
instances[origin][idx] = instance
# from here below setting the global scores from that stream
# can be done with first instance only
if i > 0:
continue
if not group and not subset:
global_scores[origin]["global"] = global_score
else:
path = []
if subset:
path += ["subsets", *subset.split("/")]
if group:
key, value = group_str_to_key_value(group)
path += ["groups", key, value]
target = global_scores[origin]
for part in path[:-1]:
if part not in target:
target[part] = {}
target = target[part]
target[path[-1]] = global_score
# the leafs always have score_name and score
def recursive_mean(dic):
if isinstance(dic, dict):
if "score" in dic and "score_name" in dic:
return dic
result = {}
all_scores = []
all_num_of_instances = []
for k, v in dic.items():
score = recursive_mean(v)
if score is not None:
all_scores.append(score["score"])
if "num_of_instances" in score:
all_num_of_instances.append(score["num_of_instances"])
result[k] = score
result["score"] = nan_mean(all_scores)
result["score_name"] = "subsets_mean"
if all_num_of_instances:
result["num_of_instances"] = sum(all_num_of_instances)
if result:
return result
return None
result = {}
for stream_name, stream_instances in instances.items():
score = global_scores[stream_name]
if "subsets" in score:
score["subsets"] = recursive_mean(score["subsets"])
score["global"] = {
"score": score["subsets"]["score"],
"score_name": score["subsets"]["score_name"],
}
if "num_of_instances" in score["subsets"]:
score["global"]["num_of_instances"] = score["subsets"][
"num_of_instances"
]
sorted_instances = []
for key in sorted(stream_instances.keys()):
instance = stream_instances[key]
instance["score"].update(recursive_copy(score))
sorted_instances.append(instance)
result[stream_name] = sorted_instances
return MultiStream.from_iterables(result, copying=True)
class PostProcessRecipe(SequentialOperatorInitializer):
def prepare(self):
register_all_artifacts()
self.steps = [
FromPredictionsAndOriginalData(),
_post_process_steps,
]
def _inference_post_process(
predictions: List[str],
references: Iterable,
split_name: str = constants.inference_stream,
):
_reset_env_local_catalogs()
register_all_artifacts()
recipe = PostProcessRecipe()
multi_stream = recipe(
predictions=predictions, references=references, split_name=split_name
)
return [instance["processed_prediction"] for instance in multi_stream[split_name]]
class MetricRecipe(SequentialOperatorInitializer):
calc_confidence_intervals: bool = True
subset_depth: int = 2
def prepare(self):
register_all_artifacts()
self.steps = [
FromPredictionsAndOriginalData(),
LoadJson(field="task_data"),
_post_process_steps,
SplitSubsetsAndGroups(
subset_depth=self.subset_depth,
),
ApplyMetric(
"metrics",
calc_confidence_intervals=self.calc_confidence_intervals,
),
JoinSubsetsAndGroups(),
Rename(
field="raw_prediction",
to_field="prediction",
),
Rename(
field="raw_references",
to_field="references",
),
RecursiveCopy(
field="source",
to_field="task_data/source",
),
]
UNITXT_METRIC_SCHEMA = Features(
{"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)}
)
def _compute(
predictions: List[str],
references: Iterable,
flatten: bool = False,
split_name: str = "all",
calc_confidence_intervals: bool = True,
):
_reset_env_local_catalogs()
register_all_artifacts()
recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals)
multi_stream = recipe(
predictions=predictions, references=references, split_name=split_name
)
if flatten:
operator = FlattenInstances()
multi_stream = operator(multi_stream)
stream = multi_stream[split_name]
return list(stream)
"""
The API of a metric service:
- MetricRequest: A single input request to the metrics service.
- MetricResponse: A response returned from a metrics service.
"""
class InstanceInput(Dataclass):
"""A single instance inputted to a metric service."""
prediction: Any
references: List[Any]
additional_inputs: Optional[Dict] = None
class MetricRequest(Dataclass):
"""A request to a metrics service, includes a list of input instances."""
instance_inputs: List[InstanceInput]
class MetricResponse(Dataclass):
"""A response produced by a metrics service, includes the computed scores."""
# A list of instance score dictionaries. Each dictionary contains the
# score names and score values for a single instance.
instances_scores: List[Dict[str, Any]]
# The global scores dictionary, containing global score names and values.
# These are scores computed over the entire set of input instances, e.g.
# an average over a score computed per instance.
global_score: Dict[str, Any]
"""
Functionality for loading the remote metrics configuration from local environment variables.
"""
# A list of metrics to be executed remotely.
# For example: '["metrics.rag.context_relevance","metrics.rag.bert_k_precision"]'
# This value should be a valid json list
UNITXT_REMOTE_METRICS = "UNITXT_REMOTE_METRICS"
# The remote endpoint on which the remote metrics are available.
# For example, 'http://127.0.0.1:8000/compute'
UNITXT_REMOTE_METRICS_ENDPOINT = "UNITXT_REMOTE_METRICS_ENDPOINT"
def get_remote_metrics_names() -> List[str]:
"""Load the remote metrics names from an environment variable.
Returns:
List[str] - names of metrics to be executed remotely.
"""
settings = get_settings()
remote_metrics = settings.remote_metrics
if remote_metrics:
remote_metrics = json.loads(remote_metrics)
if not isinstance(remote_metrics, list):
raise RuntimeError(
f"Unexpected value {remote_metrics} for the '{UNITXT_REMOTE_METRICS}' environment variable. "
f"The value is expected to be a list of metric names in json format."
)
for remote_metric in remote_metrics:
if not isinstance(remote_metric, str):
raise RuntimeError(
f"Unexpected value {remote_metric} within the '{UNITXT_REMOTE_METRICS}' environment variable. "
f"The value is expected to be a string but its type is {type(remote_metric)}."
)
return remote_metrics
def get_remote_metrics_endpoint() -> str:
"""Load the remote metrics endpoint from an environment variable.
Returns:
str - The remote endpoint on which the remote metrics are available.
"""
settings = get_settings()
try:
remote_metrics_endpoint = settings.remote_metrics_endpoint
except AttributeError as e:
raise RuntimeError(
f"Unexpected None value for '{UNITXT_REMOTE_METRICS_ENDPOINT}'. "
f"Running remote metrics requires defining an "
f"endpoint in the environment variable '{UNITXT_REMOTE_METRICS_ENDPOINT}'."
) from e
return remote_metrics_endpoint
|