File size: 3,758 Bytes
8977100 b783bce d07dbac e5a087b 7cdc7d0 d08fbc6 e5a087b 1ec0dd2 6f3c593 763caa5 1ec0dd2 c4dd600 9d5b4c0 31a2849 e5a087b f32487c b783bce e5a087b 058c80a 7ed7ada d08fbc6 d07dbac e5a087b d07dbac b783bce ebafcc4 058c80a e5a087b 63ac409 e5a087b c4dd600 e5a087b b783bce 7cdc7d0 058c80a 63ac409 e5a087b b783bce f32487c e5a087b 100c2eb 37cecae 63ac409 e5a087b 6798e06 7cdc7d0 058c80a 63ac409 b783bce 6452fbf e5a087b 63ac409 e5a087b f95da7e 8977100 63ac409 5818152 e5a087b 63ac409 5818152 8977100 63ac409 7ed7ada 63ac409 fbd19c3 8977100 fbd19c3 8977100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
from typing import Dict, Iterable, List
import evaluate
from .api import __file__ as _
from .artifact import __file__ as _
from .augmentors import __file__ as _
from .benchmark import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .collections_operators import __file__ as _
from .dataclass import __file__ as _
from .dataset_utils import __file__ as _
from .deprecation_utils import __file__ as _
from .dialog_operators import __file__ as _
from .dict_utils import __file__ as _
from .error_utils import __file__ as _
from .eval_utils import __file__ as _
from .file_utils import __file__ as _
from .formats import __file__ as _
from .fusion import __file__ as _
from .generator_utils import __file__ as _
from .hf_utils import __file__ as _
from .hf_utils import verify_versions_compatibility
from .image_operators import __file__ as _
from .inference import __file__ as _
from .instructions import __file__ as _
from .llm_as_judge import __file__ as _
from .loaders import __file__ as _
from .logging_utils import __file__ as _
from .metric_utils import UNITXT_METRIC_SCHEMA
from .metric_utils import __file__ as _
from .metric_utils import _compute
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .parsing_utils import __file__ as _
from .processors import __file__ as _
from .random_utils import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .schema import __file__ as _
from .serializers import __file__ as _
from .settings_utils import __file__ as _
from .settings_utils import get_constants
from .span_lableing_operators import __file__ as _
from .split_utils import __file__ as _
from .splitters import __file__ as _
from .standard import __file__ as _
from .stream import __file__ as _
from .stream_operators import __file__ as _
from .string_operators import __file__ as _
from .struct_data_operators import __file__ as _
from .system_prompts import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .type_utils import __file__ as _
from .types import __file__ as _
from .utils import __file__ as _
from .utils import is_package_installed
from .validate import __file__ as _
from .version import __file__ as _
constants = get_constants()
class Metric(evaluate.Metric):
calc_confidence_intervals: bool = True
VERSION = constants.version
def _info(self):
return evaluate.MetricInfo(
description="_DESCRIPTION",
citation="_CITATION",
features=UNITXT_METRIC_SCHEMA,
codebase_urls=[constants.codebase_url],
reference_urls=[constants.website_url],
)
def _compute(
self,
predictions: List[str],
references: Iterable,
flatten: bool = False,
split_name: str = "all",
):
if is_package_installed("unitxt"):
verify_versions_compatibility("metric", self.VERSION)
from unitxt.metric_utils import _compute as _compute_installed
return _compute_installed(
predictions=predictions,
references=references,
flatten=flatten,
split_name=split_name,
calc_confidence_intervals=self.calc_confidence_intervals,
)
return _compute(
predictions=predictions,
references=references,
flatten=flatten,
split_name=split_name,
calc_confidence_intervals=self.calc_confidence_intervals,
)
|