Spaces:
Build error
Build error
Diffusion-Attentive-Attribution-Maps
/
diffusers
/pipelines
/stable_diffusion
/pipeline_stable_diffusion_onnx.py
import inspect | |
from typing import List, Optional, Union | |
import numpy as np | |
from transformers import CLIPFeatureExtractor, CLIPTokenizer | |
from ...onnx_utils import OnnxRuntimeModel | |
from ...pipeline_utils import DiffusionPipeline | |
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from . import StableDiffusionPipelineOutput | |
class StableDiffusionOnnxPipeline(DiffusionPipeline): | |
vae_decoder: OnnxRuntimeModel | |
text_encoder: OnnxRuntimeModel | |
tokenizer: CLIPTokenizer | |
unet: OnnxRuntimeModel | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] | |
safety_checker: OnnxRuntimeModel | |
feature_extractor: CLIPFeatureExtractor | |
def __init__( | |
self, | |
vae_decoder: OnnxRuntimeModel, | |
text_encoder: OnnxRuntimeModel, | |
tokenizer: CLIPTokenizer, | |
unet: OnnxRuntimeModel, | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
safety_checker: OnnxRuntimeModel, | |
feature_extractor: CLIPFeatureExtractor, | |
): | |
super().__init__() | |
scheduler = scheduler.set_format("np") | |
self.register_modules( | |
vae_decoder=vae_decoder, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
eta: Optional[float] = 0.0, | |
latents: Optional[np.ndarray] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
**kwargs, | |
): | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
# get prompt text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="np", | |
) | |
text_embeddings = self.text_encoder(input_ids=text_input.input_ids.astype(np.int32))[0] | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" | |
) | |
uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | |
# get the initial random noise unless the user supplied it | |
latents_shape = (batch_size, 4, height // 8, width // 8) | |
if latents is None: | |
latents = np.random.randn(*latents_shape).astype(np.float32) | |
elif latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
# set timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
if accepts_offset: | |
extra_set_kwargs["offset"] = 1 | |
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = latents * self.scheduler.sigmas[0] | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
sigma = self.scheduler.sigmas[i] | |
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS | |
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | |
# predict the noise residual | |
noise_pred = self.unet( | |
sample=latent_model_input, timestep=np.array([t]), encoder_hidden_states=text_embeddings | |
) | |
noise_pred = noise_pred[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if isinstance(self.scheduler, LMSDiscreteScheduler): | |
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample | |
else: | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# scale and decode the image latents with vae | |
latents = 1 / 0.18215 * latents | |
image = self.vae_decoder(latent_sample=latents)[0] | |
image = np.clip(image / 2 + 0.5, 0, 1) | |
image = image.transpose((0, 2, 3, 1)) | |
# run safety checker | |
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="np") | |
image, has_nsfw_concept = self.safety_checker(clip_input=safety_checker_input.pixel_values, images=image) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |