chap0lin commited on
Commit
3ddaee3
·
1 Parent(s): 52d07c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -23
app.py CHANGED
@@ -115,30 +115,32 @@ def classify(df, new_column = True):
115
  print("Transformado em W2V")
116
  words = list(reloaded_w2v_model.wv.vocab)
117
  item_shape = np.shape(reloaded_w2v_model.wv[words[0]])
 
 
118
  MCTIinput_vector = []
119
- for sentence in formatted_sentences:
120
- aux_vector = []
121
- for word in sentence:
122
- try:
123
- aux_vector.append(reloaded_w2v_model.wv[word])
124
- except:
125
- aux_vector.append(np.zeros(item_shape))
126
- MCTIinput_vector.append(aux_vector)
127
- del formatted_sentences
128
-
129
- MCTIinput_padded = pad_sequences(MCTIinput_vector, maxlen=2726, padding='pre')
130
- del MCTIinput_vector
131
- print("Sentenças com Padding")
132
- predictions = reconstructed_model_CNN.predict(MCTIinput_padded)
133
- del MCTIinput_padded
134
- print(predictions)
135
-
136
- cleaned_up_predictions = []
137
- for prediction in predictions:
138
- cleaned_up_predictions.append(1 if prediction >= 0.5 else 0);
139
- del predictions
140
-
141
- df['classification'] = cleaned_up_predictions
142
  return df
143
 
144
  def gen_output(data):
 
115
  print("Transformado em W2V")
116
  words = list(reloaded_w2v_model.wv.vocab)
117
  item_shape = np.shape(reloaded_w2v_model.wv[words[0]])
118
+ print(formatted_sentences)
119
+
120
  MCTIinput_vector = []
121
+ # for sentence in formatted_sentences:
122
+ # aux_vector = []
123
+ # for word in sentence:
124
+ # try:
125
+ # aux_vector.append(reloaded_w2v_model.wv[word])
126
+ # except:
127
+ # aux_vector.append(np.zeros(item_shape))
128
+ # MCTIinput_vector.append(aux_vector)
129
+ # del formatted_sentences
130
+
131
+ # MCTIinput_padded = pad_sequences(MCTIinput_vector, maxlen=2726, padding='pre')
132
+ # del MCTIinput_vector
133
+ # print("Sentenças com Padding")
134
+ # predictions = reconstructed_model_CNN.predict(MCTIinput_padded)
135
+ # del MCTIinput_padded
136
+ # print(predictions)
137
+
138
+ # cleaned_up_predictions = []
139
+ # for prediction in predictions:
140
+ # cleaned_up_predictions.append(1 if prediction >= 0.5 else 0);
141
+ # del predictions
142
+
143
+ # df['classification'] = cleaned_up_predictions
144
  return df
145
 
146
  def gen_output(data):