Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
from scipy.signal import resample
|
6 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
7 |
+
import pdfplumber
|
8 |
+
from reportlab.lib.pagesizes import letter
|
9 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
10 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
11 |
+
import streamlit as st
|
12 |
+
import io
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
# Suppress warnings globally
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
+
|
18 |
+
# Setup models
|
19 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
20 |
+
whisper_model_id = "openai/whisper-medium"
|
21 |
+
|
22 |
+
# Load Whisper model and processor
|
23 |
+
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_id)
|
24 |
+
whisper_processor = AutoProcessor.from_pretrained(whisper_model_id)
|
25 |
+
|
26 |
+
# Create Whisper pipeline
|
27 |
+
whisper_pipe = pipeline(
|
28 |
+
"automatic-speech-recognition",
|
29 |
+
model=whisper_model,
|
30 |
+
tokenizer=whisper_processor.tokenizer,
|
31 |
+
feature_extractor=whisper_processor.feature_extractor,
|
32 |
+
device=device
|
33 |
+
)
|
34 |
+
|
35 |
+
# Setup FLAN-T5 model and tokenizer
|
36 |
+
flan_t5_model_id = "google/flan-t5-large"
|
37 |
+
|
38 |
+
try:
|
39 |
+
flan_t5_tokenizer = T5Tokenizer.from_pretrained(flan_t5_model_id)
|
40 |
+
flan_t5_model = T5ForConditionalGeneration.from_pretrained(flan_t5_model_id)
|
41 |
+
except ImportError as e:
|
42 |
+
st.error(f"ImportError: {e}")
|
43 |
+
st.stop()
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"An error occurred while loading models: {e}")
|
46 |
+
st.stop()
|
47 |
+
|
48 |
+
# Function to resample audio to 16000 Hz
|
49 |
+
def resample_audio(audio_data, original_sample_rate, target_sample_rate=16000):
|
50 |
+
num_samples = int(len(audio_data) * float(target_sample_rate) / original_sample_rate)
|
51 |
+
resampled_audio = resample(audio_data, num_samples)
|
52 |
+
return resampled_audio
|
53 |
+
|
54 |
+
# Function to transcribe audio files
|
55 |
+
def transcribe_audio(audio_file):
|
56 |
+
try:
|
57 |
+
# Read the audio file
|
58 |
+
audio_data, sample_rate = sf.read(audio_file)
|
59 |
+
|
60 |
+
# Resample if necessary
|
61 |
+
if sample_rate != 16000:
|
62 |
+
audio_data = resample_audio(audio_data, sample_rate, 16000)
|
63 |
+
|
64 |
+
# Process the audio with Whisper model
|
65 |
+
inputs = whisper_processor(audio_data, sampling_rate=16000, return_tensors="pt")
|
66 |
+
result = whisper_pipe(inputs)
|
67 |
+
return result['text']
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error in audio transcription: {e}")
|
70 |
+
return "Error during transcription"
|
71 |
+
|
72 |
+
# Function to extract text and questions from PDF
|
73 |
+
def extract_text_from_pdf(pdf_file):
|
74 |
+
text = ""
|
75 |
+
questions = []
|
76 |
+
try:
|
77 |
+
with pdfplumber.open(pdf_file) as pdf:
|
78 |
+
for page in pdf.pages:
|
79 |
+
page_text = page.extract_text()
|
80 |
+
if page_text:
|
81 |
+
text += page_text
|
82 |
+
lines = page_text.split("\n")
|
83 |
+
for line in lines:
|
84 |
+
if line.strip() and line.strip()[0].isdigit():
|
85 |
+
questions.append(line.strip())
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error extracting text from PDF: {e}")
|
88 |
+
return text, questions
|
89 |
+
|
90 |
+
# Function to generate form data with FLAN-T5
|
91 |
+
def generate_form_data(text, questions):
|
92 |
+
responses = []
|
93 |
+
for question in questions:
|
94 |
+
input_text = f"""The following text is a transcript from an audio recording. Read the text and answer the following question in a complete sentence.\n\nText: {text}\n\nQuestion: {question}\n\nAnswer:"""
|
95 |
+
|
96 |
+
inputs = flan_t5_tokenizer(input_text, return_tensors='pt', max_length=1024, truncation=True)
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = flan_t5_model.generate(**inputs, max_length=100)
|
99 |
+
|
100 |
+
generated_text = flan_t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
+
|
102 |
+
if not generated_text.strip():
|
103 |
+
generated_text = "The answer to this question is not present in the script."
|
104 |
+
elif len(generated_text.strip()) < 10:
|
105 |
+
input_text = f"""Based on the following transcript, provide a more detailed answer to the question.\n\nText: {text}\n\nQuestion: {question}\n\nAnswer:"""
|
106 |
+
inputs = flan_t5_tokenizer(input_text, return_tensors='pt', max_length=1024, truncation=True)
|
107 |
+
outputs = flan_t5_model.generate(**inputs, max_length=100)
|
108 |
+
generated_text = flan_t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
109 |
+
|
110 |
+
responses.append(f"Question: {question}\nAnswer: {generated_text.strip()}")
|
111 |
+
|
112 |
+
return "\n\n".join(responses)
|
113 |
+
|
114 |
+
# Function to save responses to PDF
|
115 |
+
def save_responses_to_pdf(responses, output_pdf_path):
|
116 |
+
document = SimpleDocTemplate(output_pdf_path, pagesize=letter)
|
117 |
+
styles = getSampleStyleSheet()
|
118 |
+
|
119 |
+
response_style = ParagraphStyle(
|
120 |
+
name='ResponseStyle',
|
121 |
+
parent=styles['BodyText'],
|
122 |
+
fontSize=10,
|
123 |
+
spaceAfter=12
|
124 |
+
)
|
125 |
+
|
126 |
+
content = []
|
127 |
+
for index, response in enumerate(responses, start=1):
|
128 |
+
heading = Paragraph(f"<b>File {index}:</b>", styles['Heading2'])
|
129 |
+
response_text = Paragraph(response.replace("\n", "<br/>"), response_style)
|
130 |
+
|
131 |
+
content.append(heading)
|
132 |
+
content.append(Spacer(1, 6))
|
133 |
+
content.append(response_text)
|
134 |
+
content.append(Spacer(1, 18))
|
135 |
+
|
136 |
+
document.build(content)
|
137 |
+
|
138 |
+
# Streamlit UI
|
139 |
+
st.title("FillUp by Umar Majeed")
|
140 |
+
|
141 |
+
# Upload audio files
|
142 |
+
audio_files = st.file_uploader("Upload multiple audio files", type=["wav", "mp3"], accept_multiple_files=True)
|
143 |
+
|
144 |
+
# Upload PDF file
|
145 |
+
pdf_file = st.file_uploader("Upload a PDF file", type="pdf")
|
146 |
+
|
147 |
+
if st.button("Process"):
|
148 |
+
if audio_files and pdf_file:
|
149 |
+
responses = []
|
150 |
+
pdf_text, pdf_questions = extract_text_from_pdf(pdf_file)
|
151 |
+
|
152 |
+
for audio_file in audio_files:
|
153 |
+
transcribed_text = transcribe_audio(audio_file)
|
154 |
+
form_data = generate_form_data(transcribed_text, pdf_questions)
|
155 |
+
responses.append(form_data)
|
156 |
+
st.write(f"File {len(responses)}:\n{form_data}\n")
|
157 |
+
|
158 |
+
output_pdf_path = "/tmp/response_output.pdf"
|
159 |
+
save_responses_to_pdf(responses, output_pdf_path)
|
160 |
+
st.write("Responses have been generated. You can download the result below.")
|
161 |
+
|
162 |
+
with open(output_pdf_path, "rb") as file:
|
163 |
+
st.download_button(
|
164 |
+
label="Download PDF",
|
165 |
+
data=file,
|
166 |
+
file_name="response_output.pdf",
|
167 |
+
mime="application/pdf"
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
st.error("Please upload both audio files and a PDF file.")
|