Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
6 |
+
import pdfplumber
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
9 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
10 |
+
|
11 |
+
# Suppress warnings globally
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# Setup models
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
whisper_model_id = "openai/whisper-medium"
|
17 |
+
|
18 |
+
# Load Whisper model and processor
|
19 |
+
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_id)
|
20 |
+
whisper_processor = AutoProcessor.from_pretrained(whisper_model_id)
|
21 |
+
|
22 |
+
# Create Whisper pipeline
|
23 |
+
whisper_pipe = pipeline(
|
24 |
+
"automatic-speech-recognition",
|
25 |
+
model=whisper_model,
|
26 |
+
tokenizer=whisper_processor.tokenizer,
|
27 |
+
feature_extractor=whisper_processor.feature_extractor,
|
28 |
+
device=device
|
29 |
+
)
|
30 |
+
|
31 |
+
# Setup FLAN-T5 model and tokenizer
|
32 |
+
flan_t5_model_id = "google/flan-t5-large"
|
33 |
+
flan_t5_tokenizer = T5Tokenizer.from_pretrained(flan_t5_model_id)
|
34 |
+
flan_t5_model = T5ForConditionalGeneration.from_pretrained(flan_t5_model_id)
|
35 |
+
|
36 |
+
# Function to transcribe audio files
|
37 |
+
def transcribe_audio(file_path):
|
38 |
+
result = whisper_pipe(file_path)
|
39 |
+
return result['text']
|
40 |
+
|
41 |
+
# Function to extract text and questions from PDF
|
42 |
+
def extract_text_from_pdf(pdf_path):
|
43 |
+
text = ""
|
44 |
+
questions = []
|
45 |
+
with pdfplumber.open(pdf_path) as pdf:
|
46 |
+
for page in pdf.pages:
|
47 |
+
page_text = page.extract_text()
|
48 |
+
if page_text:
|
49 |
+
text += page_text
|
50 |
+
# Extract questions based on numbering
|
51 |
+
lines = page_text.split("\n")
|
52 |
+
for line in lines:
|
53 |
+
if line.strip() and line.strip()[0].isdigit():
|
54 |
+
questions.append(line.strip())
|
55 |
+
return text, questions
|
56 |
+
|
57 |
+
# Function to generate form data with FLAN-T5
|
58 |
+
def generate_form_data(text, questions):
|
59 |
+
responses = []
|
60 |
+
for question in questions:
|
61 |
+
input_text = f"""The following text is a transcript from an audio recording. Read the text and answer the following question in a complete sentence.\n\nText: {text}\n\nQuestion: {question}\n\nAnswer:"""
|
62 |
+
|
63 |
+
# Tokenize the input text
|
64 |
+
inputs = flan_t5_tokenizer(input_text, return_tensors='pt', max_length=1024, truncation=True)
|
65 |
+
|
66 |
+
# Generate the answer using the model
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = flan_t5_model.generate(**inputs, max_length=100)
|
69 |
+
|
70 |
+
# Decode the generated text
|
71 |
+
generated_text = flan_t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
# Handle incomplete or missing answers
|
74 |
+
if not generated_text.strip():
|
75 |
+
generated_text = "The answer to this question is not present in the script."
|
76 |
+
elif len(generated_text.strip()) < 10: # Arbitrary threshold for short/incomplete answers
|
77 |
+
input_text = f"""Based on the following transcript, provide a more detailed answer to the question.\n\nText: {text}\n\nQuestion: {question}\n\nAnswer:"""
|
78 |
+
inputs = flan_t5_tokenizer(input_text, return_tensors='pt', max_length=1024, truncation=True)
|
79 |
+
outputs = flan_t5_model.generate(**inputs, max_length=100)
|
80 |
+
generated_text = flan_t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
|
82 |
+
# Append question and response
|
83 |
+
responses.append(f"Question: {question}\nAnswer: {generated_text.strip()}")
|
84 |
+
|
85 |
+
return "\n\n".join(responses)
|
86 |
+
|
87 |
+
# Function to save responses to PDF
|
88 |
+
def save_responses_to_pdf(responses, output_pdf_path):
|
89 |
+
document = SimpleDocTemplate(output_pdf_path, pagesize=letter)
|
90 |
+
styles = getSampleStyleSheet()
|
91 |
+
|
92 |
+
# Custom style for responses
|
93 |
+
response_style = ParagraphStyle(
|
94 |
+
name='ResponseStyle',
|
95 |
+
parent=styles['BodyText'],
|
96 |
+
fontSize=10,
|
97 |
+
spaceAfter=12
|
98 |
+
)
|
99 |
+
|
100 |
+
content = []
|
101 |
+
for index, response in enumerate(responses, start=1):
|
102 |
+
# Add the response number and content
|
103 |
+
heading = Paragraph(f"<b>File {index}:</b>", styles['Heading2'])
|
104 |
+
response_text = Paragraph(response.replace("\n", "<br/>"), response_style)
|
105 |
+
|
106 |
+
content.append(heading)
|
107 |
+
content.append(Spacer(1, 6)) # Space between heading and response
|
108 |
+
content.append(response_text)
|
109 |
+
content.append(Spacer(1, 18)) # Space between responses
|
110 |
+
|
111 |
+
document.build(content)
|
112 |
+
|
113 |
+
# Gradio interface function
|
114 |
+
def process_files(audio_files, pdf_file):
|
115 |
+
responses = []
|
116 |
+
for audio_file in audio_files:
|
117 |
+
# Transcribe audio
|
118 |
+
transcribed_text = transcribe_audio(audio_file.name)
|
119 |
+
# Extract text and form fields from PDF
|
120 |
+
pdf_text, pdf_questions = extract_text_from_pdf(pdf_file.name)
|
121 |
+
# Generate form data
|
122 |
+
form_data = generate_form_data(transcribed_text, pdf_questions)
|
123 |
+
responses.append(form_data)
|
124 |
+
|
125 |
+
# Save all responses to a PDF
|
126 |
+
output_pdf_path = "output.pdf"
|
127 |
+
save_responses_to_pdf(responses, output_pdf_path)
|
128 |
+
|
129 |
+
return output_pdf_path
|
130 |
+
|
131 |
+
# Gradio interface definition
|
132 |
+
interface = gr.Interface(
|
133 |
+
fn=process_files,
|
134 |
+
inputs=[
|
135 |
+
gr.Files(label="Upload Audio Files", type="filepath"),
|
136 |
+
gr.File(label="Upload PDF File", type="filepath")
|
137 |
+
],
|
138 |
+
outputs=gr.File(label="Download Output PDF")
|
139 |
+
)
|
140 |
+
|
141 |
+
# Launch the interface
|
142 |
+
interface.launch()
|