Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,17 @@
|
|
1 |
-
import
|
2 |
-
import os
|
3 |
import requests
|
4 |
import pdfplumber
|
5 |
import torch
|
6 |
-
import ffmpeg
|
7 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
-
import streamlit as st
|
9 |
from reportlab.lib.pagesizes import letter
|
10 |
-
from reportlab.pdfgen import canvas
|
11 |
-
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
12 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Define paths for temporary files
|
19 |
-
temp_audio_folder = "/tmp/audios/"
|
20 |
-
temp_pdf_path = "/tmp/uploaded_pdf.pdf"
|
21 |
-
temp_output_pdf_path = "/tmp/response_output.pdf"
|
22 |
-
|
23 |
-
# Ensure temporary directories exist
|
24 |
-
os.makedirs(temp_audio_folder, exist_ok=True)
|
25 |
|
26 |
# Setup models
|
27 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -40,7 +30,6 @@ whisper_pipe = pipeline(
|
|
40 |
device=device
|
41 |
)
|
42 |
|
43 |
-
# Granite model URL and headers
|
44 |
granite_url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
45 |
granite_headers = {
|
46 |
"Accept": "application/json",
|
@@ -128,60 +117,36 @@ def save_responses_to_pdf(responses, output_pdf_path):
|
|
128 |
|
129 |
document.build(content)
|
130 |
|
131 |
-
#
|
132 |
-
st.title("
|
133 |
|
134 |
-
#
|
135 |
-
|
|
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
transcription = transcribe_audio(audio_path)
|
162 |
-
|
163 |
-
# Extract text and questions from PDF
|
164 |
-
pdf_text, questions = extract_text_from_pdf(temp_pdf_path)
|
165 |
-
|
166 |
-
# Generate form data with Granite
|
167 |
-
form_data = generate_form_data(transcription, questions)
|
168 |
-
responses.append(form_data)
|
169 |
-
|
170 |
-
# Display responses in output box
|
171 |
-
output_box.write("Processing completed. Here are the results:")
|
172 |
-
for index, response in enumerate(responses, start=1):
|
173 |
-
output_box.write(f"File {index}:\n{response}\n")
|
174 |
-
|
175 |
-
# Save responses to PDF
|
176 |
-
save_responses_to_pdf(responses, temp_output_pdf_path)
|
177 |
-
|
178 |
-
# Button to download the PDF with responses
|
179 |
-
with open(temp_output_pdf_path, "rb") as f:
|
180 |
-
st.download_button(
|
181 |
-
label="Download Responses as PDF",
|
182 |
-
data=f,
|
183 |
-
file_name="response_output.pdf",
|
184 |
-
mime="application/pdf"
|
185 |
-
)
|
186 |
-
else:
|
187 |
-
st.warning("Please upload both audio files and a PDF file.")
|
|
|
1 |
+
import streamlit as st
|
|
|
2 |
import requests
|
3 |
import pdfplumber
|
4 |
import torch
|
|
|
5 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
|
6 |
from reportlab.lib.pagesizes import letter
|
|
|
|
|
7 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
8 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
9 |
+
import os
|
10 |
|
11 |
+
# Define paths (for temporary storage)
|
12 |
+
audio_folder_path = "./audio" # Temporary path for uploaded files
|
13 |
+
pdf_path = "./form.pdf" # Temporary path for uploaded files
|
14 |
+
output_pdf_path = "./response_output.pdf" # Path to save the PDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Setup models
|
17 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
30 |
device=device
|
31 |
)
|
32 |
|
|
|
33 |
granite_url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
34 |
granite_headers = {
|
35 |
"Accept": "application/json",
|
|
|
117 |
|
118 |
document.build(content)
|
119 |
|
120 |
+
# Streamlit UI
|
121 |
+
st.title("Audio to Form Data Processing")
|
122 |
|
123 |
+
# File upload
|
124 |
+
uploaded_audio = st.file_uploader("Upload Audio File", type=["wav", "mp3"])
|
125 |
+
uploaded_pdf = st.file_uploader("Upload PDF File", type=["pdf"])
|
126 |
|
127 |
+
if uploaded_audio and uploaded_pdf:
|
128 |
+
# Save uploaded files temporarily
|
129 |
+
audio_path = os.path.join(audio_folder_path, uploaded_audio.name)
|
130 |
+
pdf_path = os.path.join(pdf_path, uploaded_pdf.name)
|
131 |
|
132 |
+
with open(audio_path, "wb") as f:
|
133 |
+
f.write(uploaded_audio.read())
|
134 |
+
|
135 |
+
with open(pdf_path, "wb") as f:
|
136 |
+
f.write(uploaded_pdf.read())
|
137 |
+
|
138 |
+
# Process files
|
139 |
+
transcribed_text = transcribe_audio(audio_path)
|
140 |
+
pdf_text, pdf_questions = extract_text_from_pdf(pdf_path)
|
141 |
+
form_data = generate_form_data(transcribed_text, pdf_questions)
|
142 |
+
|
143 |
+
# Display results
|
144 |
+
st.write("### Extracted Form Data")
|
145 |
+
st.text_area("Form Data", form_data, height=300)
|
146 |
+
|
147 |
+
# Save results to PDF
|
148 |
+
save_responses_to_pdf([form_data], output_pdf_path)
|
149 |
+
|
150 |
+
# Download link for PDF
|
151 |
+
with open(output_pdf_path, "rb") as f:
|
152 |
+
st.download_button("Download Response PDF", f, file_name="response_output.pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|