Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import logging | |
import asyncio | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
api_key = os.getenv("HUGGING_FACE_API_TOKEN") | |
# Available models | |
models = { | |
"Llama-3B": "meta-llama/Llama-3.2-3B-Instruct", | |
"Gemma-7B": "google/gemma-1.1-7b-it", | |
"DeepSeek-Coder": "deepseek-ai/deepseek-coder-1.3b-instruct", | |
"Gemma-27B": "google/gemma-2-27b-it", | |
"DeepSeek-R1": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", | |
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.3" | |
} | |
# Initialize client | |
client = InferenceClient(api_key=api_key) | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Function to interact with selected model | |
async def chat_with_model(user_query, model_name): | |
if model_name not in models: | |
return "β Invalid model selection. Please choose a valid model." | |
model_id = models[model_name] | |
messages = [ | |
{"role": "system", "content": | |
""" | |
""" | |
}, | |
{"role": "user", "content": user_query} | |
] | |
max_retries = 3 | |
for attempt in range(1, max_retries + 1): | |
try: | |
response = client.chat.completions.create( | |
model=model_id, | |
messages=messages, | |
temperature=0.5, | |
max_tokens=1024, # Reduce for faster response | |
top_p=0.7, | |
stream=False | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
logger.warning(f"Attempt {attempt}/{max_retries} failed: {str(e)}") | |
if attempt < max_retries: | |
await asyncio.sleep(1) # Short delay before retrying | |
return "β The model is currently unavailable after multiple retries. Please try again later." | |
# Create Gradio UI | |
def chat_interface(user_query, model_name): | |
return asyncio.run(chat_with_model(user_query, model_name)) | |
with gr.Blocks() as demo: | |
gr.Markdown("## Harry's AI Chatbot") | |
gr.Markdown("### Select a model and ask your question to get a response from the AI.") | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=list(models.keys()), | |
label="Select AI Model", | |
value="Mistral-7B" | |
) | |
user_input = gr.Textbox(label="Enter your message", placeholder="Type your question here...") | |
chat_button = gr.Button("Chat") | |
output_text = gr.Textbox(label="AI Response", interactive=False) | |
chat_button.click(chat_interface, inputs=[user_input, model_dropdown], outputs=output_text) | |
# Launch Gradio app | |
demo.launch() | |